MACHAKOS UNIVERSITY

University Examinations 2018/2019
SCHOOL OF PURE AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTUARIAL SCIENCE
SECOND YEAR SECOND SEMESTER EXAMINATION FOR
BACHELOR OF EDUCATION
SMA 230: VECTOR ANALYSIS.
DATE: 29/4/2019
TIME: 2:00-4:00 PM

INSTRUCTIONS:

Answer Question One And Any Other Two Questions

QUESTION ONE (COMPULSORY) (30 MARKS)
a) Find the directional derivative of $\psi=(x+2 y+z)^{2}-(x-y-z)^{2}$ at the point $(2,1,-1)$ in the direction of $\boldsymbol{A}=\boldsymbol{i}-4 \boldsymbol{j}+2 \boldsymbol{k}$.
(4 marks)
b) A vector field \mathbf{B} is given by $\mathbf{B}=\left(x^{2}+x y^{2}\right) \mathbf{i}+\left(y^{2}+x^{2} y\right) \mathbf{j}$. Show that the field is irrotational
c) Given that $\vec{R}=e^{-t} \boldsymbol{i}+\ln \left(t^{2}+1\right) \boldsymbol{j}+\tan t \boldsymbol{k}$, determine;
i) $\left|\frac{d \vec{R}}{d t}\right|$ at $\quad t=o$
ii) $\left|\frac{d^{2} \vec{R}}{d t^{2}}\right|$ at $t=0$
d) Find the directional derivative $\phi=x^{2} y z+4 x z^{2}$ at (1,-2,1) in the direction
$2 \boldsymbol{i}-\boldsymbol{j}-2 \boldsymbol{k}$
e) State the following
i) Frenet serret formulae
ii) Green's theorem
iii) Stokes theorem
f) If $\mathbf{F}=x^{2} \mathbf{i}-x y \mathbf{j}$, evaluate $\int \mathbf{F} \bullet d \mathbf{R}$ from $(0,0)$ to (1,1) along a straight line joining the two points.
g) If $\frac{d \mathbf{A}}{\mathbf{d} t}=\mathbf{C} \times \mathbf{A}$ and $\frac{d \mathbf{B}}{d t}=\mathbf{C} \times \mathbf{B}$, prove that $\frac{d}{d t}(\mathbf{A} \times \mathbf{B})=\mathbf{C} \times(\mathbf{A} \times \mathbf{B})$

QUESTION TWO (20 MARKS)

a) If the vector field $\mathbf{F}=2 y \mathbf{i}-z \mathbf{j}+x \mathbf{k}$,
i) Determine whether the point $P(1,0,2)$ is a source, sink or neither.
ii) Evaluate $\int_{C} \mathbf{F} \times d \mathbf{R}$ along a curve $x=\cos t, y=\sin t$ and $z=2 \cos t$ from $t=0$ to

$$
\begin{equation*}
t=\frac{\pi}{2} \tag{7marks}
\end{equation*}
$$

b) Show that the vector field $\mathbf{F}=\left(x^{2}-y z\right) \mathbf{i}+\left(y^{2}-x z\right) \mathbf{j}+\left(z^{2}-x y\right) \mathbf{k}$ is irrotational. Find a scalar function ϕ such that $\mathbf{F}=\nabla \phi$.
(10 marks)

QUESTION THREE (20 MARKS)

a) A particle moves along the curve $x=2 t^{2}, y=t^{2}-4$ and $z=3 t$, determine the components of its velocity and acceleration at a time $t=1$ in the direction of $\boldsymbol{i}+3 \boldsymbol{j}-2 \boldsymbol{k}$
b) Given that $\vec{A}=x^{2} y z \boldsymbol{i}-2 x z^{3} \boldsymbol{j}+x z^{2} \boldsymbol{k}$ and $\vec{B}=2 z \boldsymbol{i}+y \boldsymbol{j}-x^{2} \boldsymbol{k}$, determine $(\vec{B} \times \vec{A})$ at

$$
(1,0,-2)
$$

c) Verify Green's theorem in the plane for $\oint_{C}\left[\left(x^{2}+y^{2}\right) d x-2 x y d y\right]$, where C is the rectangle bounded by $y=0, x=0, y=b, x=a$

QUESTION FOUR (20 MARKS)

a) If $\mathbf{F}=\left(5 x y-6 x^{2}\right) \mathbf{i}+(2 y-4 x) \mathbf{j}$, evaluate $\int_{c} \mathbf{F} \bullet d \mathbf{R}$ along a curve C in the $x y$ plane,

$$
y=x^{3} \text { from point }(1,1) \text { to }(2,8)
$$

b) If $|\mathbf{a}|=13,|\mathbf{b}+\mathbf{a}|=16$ and $|\mathbf{b}-\mathbf{a}|=14$, find $|\mathbf{b}|$
c) Verify the Stoke's theorem for the function $\mathbf{F}=\mathbf{3} x \mathbf{i}-\mathbf{y}^{2} \mathbf{j}$ integrated over the curve
$y=2 x^{2}$ in the $x y-$ plane from $(0,0)$ to 1,2
(10 marks)

QUESTION FIVE (20 MARKS)

Given the space curve defined by the parametric equations $x(t)=-\frac{-t^{3}}{3}, y(t)=t^{2}, z(t)=\frac{t^{3}}{3}$, find:
i) The unit tangent
ii) The principal normal
iii) The binormal
iv) The curvature
v) The torsion

