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MACHAKOS UNIVERSITY  
University Examinations 2018/2019 

 

SCHOOL OF PURE AND APPLIED SCIENCES 

DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTUARIAL SCIENCE 

SECOND YEAR SECOND SEMESTER EXAMINATION FOR  

BACHELOR OF EDUCATION  

SMA 230: VECTOR ANALYSIS. 

DATE: 29/4/2019                               TIME: 2:00 – 4:00 PM  

INSTRUCTIONS:  

Answer Question One And Any Other Two Questions 

QUESTION ONE (COMPULSORY) (30 MARKS) 

a) Find the directional derivative of   (      )  (     )  at the point (2,1,-1) 

in the direction of                                   (4 marks) 

b) A vector field B  is given by    jiB yxyxyx 2222  . Show that the field is 

irrotational                          (4 marks)  

c) Given that  ⃗         (    )        , determine; 

i) |
  ⃗ 

  
|  at                    (2 marks) 

ii) |
   ⃗ 

   
| at                    (2 marks) 

d) Find the directional derivative            at (      ) in the direction  

                        (4 marks) 

e) State the following 

i)  Frenet serret formulae              (3 marks) 

ii) Green’s theorem               (2 marks) 

iii) Stokes theorem              (2 marks) 
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f) If jiF xyx  2 , evaluate   RF d from  0,0  to  1,1  along a straight line joining the two 

points.                 (4 marks) 

g) If AC
d

A


t

d
 and BC

B


dt

d
, prove that    BACBA 

dt

d
       (3 marks) 

QUESTION TWO (20 MARKS) 

a)    If the vector field kjiF xzy  2 ,  

i) Determine whether the point  2,0,1P is a source, sink or neither.         (3 marks) 

ii) Evaluate  
C

dRF  along a curve tx cos , ty sin and tz cos2  from 0t  to 

2


t                  (7 marks) 

b)      Show that the vector field      kjiF xyzxzyyzx  222  is irrotational. Find a 

scalar function   such that F .                       (10 marks) 

 

 

QUESTION THREE (20 MARKS) 

 

a) A particle moves along the curve                      , determine the 

components of its velocity and acceleration at a time     in  the direction of              

                        (7 marks) 

b) Given that                     and  ⃗            , determine ( ⃗     ) at 

(      )                 (7marks) 

c) Verify Green’s theorem in the plane for    
C

xydydxyx 222
, where C is the rectangle 

bounded by ,0y 0x , by  , ax               (6 marks) 
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QUESTION FOUR (20 MARKS) 

 

a) If    jiF xyxxy 4265 2  , evaluate  
c

dRF  along a curve C  in the xy  plane, 

3xy  from point   1,1 to  8,2 .               (5 marks) 

b) If  13a , 16 ab  and 14 ab , find b             (5 marks) 

c) Verify the Stoke’s theorem for the function jyi3F
2 xy  integrated over the curve         

22xy   in the xy plane from  0,0  to 2,1            (10 marks) 

 QUESTION FIVE (20 MARKS) 

Given the space curve defined by the parametric equations  
3

3t
tx


 ,   2tty  ,  

3

3t
tz  , 

find: 

i) The unit tangent               (4 marks) 

ii) The principal normal               (4 marks) 

iii) The binormal                (4 marks) 

iv) The curvature                (4 marks) 

v) The torsion                (4 marks) 


