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INSTRUCTIONS:
Answer Question One And Any Other Two Questions

QUESTION ONE (COMPULSORY) (30 MARKYS)
a) Find the directional derivative of = (x + 2y + z)? — (x — y — z)? at the point (2,1,-1)

in the direction of A =i — 4j + 2k. (4 marks)
b) A vector field B is given by B = (x2 + xyz)i + (y2 + xzy)j. Show that the field is
irrotational (4 marks)

c) Given that R = e i + In(¢% + 1) j + tan t k, determine;
)] |Z—f| at t=o (2 marks)

... |d?R
i) |55

att =20 (2 marks)
d) Find the directional derivative ¢ = x2yz + 4xz?at (1, —2,1) in the direction
2i—j—2k (4 marks)

e) State the following

)} Frenet serret formulae (3 marks)
i) Green’s theorem (2 marks)
iii) Stokes theorem (2 marks)
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f) If F=x%i—xyj, evaluate IF «dR from (0,0) to (11) along a straight line joining the two

points. (4 marks)
9) Ifi—?szA and (;—L:’:CxB,provethat%(AXB)=C><(A><B) (3 marks)

QUESTION TWO (20 MARKS)

a) If the vector field F =2yi—zj+ xk,
i) Determine whether the point P(1,0,2)is a source, sink or neither, (3 marks)

i) Evaluate J.deR along a curve x=cost, y=sintand z =2cost from t=0 to
C

t :% (7 marks)
b)  Show that the vector field F = (x2 — yz)i + (y2 — xz)j + (22 — xy)k is irrotational. Find a
scalar function ¢ suchthat F=V¢. (10 marks)

QUESTION THREE (20 MARKYS)

a) A particle moves along the curve x = 2t2?,y = t? — 4 and z = 3t, determine the
components of its velocity and acceleration at atime t = 1 in the direction of
i+3j—2k (7 marks)

b) Given that 4 = x?yzi — 2x2z3%j + xz?k and B = 2zi + yj — x?k, determine (B x A4) at
(1,0,-2) (7marks)

C) Verify Green’s theorem in the plane for ﬂ(x2 +y? )dx — 2xydy], where C is the rectangle
Cc

bounded by y=0,x=0, y=b, x=a (6 marks)
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QUESTION FOUR (20 MARKS)
a) IfF= (5xy—6x2)i +(2y —4x)j, evaluate J'FodR along a curve C inthe xy plane,

y = x*from point (L1)to (28). (5 marks)
b) If [a|=13, |o+a/=16 and [o—a|=14, find |b| (5 marks)

c) Verify the Stoke’s theorem for the function F = 3xyi —y?j integrated over the curve

y =2x? inthe xy—plane from (0,0) to 1,2 (10 marks)

QUESTION FIVE (20 MARKS)

Given the space curve defined by the parametric equations x(t) = —_—: L y(t)=t%, z(t)= % ,
find:
)] The unit tangent (4 marks)
i) The principal normal (4 marks)
iii) The binormal (4 marks)
iv) The curvature (4 marks)
V) The torsion (4 marks)
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