

MACHAKOS UNIVERSITY

University Examinations 2018/2019

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTUARIAL SCIENCE

SECOND YEAR SECOND SEMESTER EXAMINATION FOR

BACHELOR OF EDUCATION

SMA 230: VECTOR ANALYSIS.

DATE: 29/4/2019

TIME: 2:00 – 4:00 PM

INSTRUCTIONS:

Answer Question One And Any Other Two Questions

QUESTION ONE (COMPULSORY) (30 MARKS)

- a) Find the directional derivative of $\psi = (x + 2y + z)^2 (x y z)^2$ at the point (2,1,-1) in the direction of $\mathbf{A} = \mathbf{i} - 4\mathbf{j} + 2\mathbf{k}$. (4 marks)
- b) A vector field **B** is given by $\mathbf{B} = (x^2 + xy^2)\mathbf{i} + (y^2 + x^2y)\mathbf{j}$. Show that the field is irrotational (4 marks)
- c) Given that $\vec{R} = e^{-t} i + \ln(t^2 + 1) j + \tan t k$, determine;
 - i) $\left|\frac{d\vec{R}}{dt}\right|$ at t = o (2 marks)

ii)
$$\left|\frac{d^2\vec{R}}{dt^2}\right|$$
 at $t = 0$ (2 marks)

d) Find the directional derivative $\phi = x^2yz + 4xz^2$ at (1, -2, 1) in the direction

- $2\mathbf{i} \mathbf{j} 2\mathbf{k} \tag{4 marks}$
- e) State the following
 - i) Frenet serret formulae (3 marks)
 - ii) Green's theorem (2 marks)
 - iii) Stokes theorem (2 marks)

f) If $\mathbf{F} = x^2 \mathbf{i} - xy \mathbf{j}$, evaluate $\int \mathbf{F} \cdot d\mathbf{R}$ from (0,0) to (1,1) along a straight line joining the two points. (4 marks)

g) If
$$\frac{d\mathbf{A}}{dt} = \mathbf{C} \times \mathbf{A}$$
 and $\frac{d\mathbf{B}}{dt} = \mathbf{C} \times \mathbf{B}$, prove that $\frac{d}{dt} (\mathbf{A} \times \mathbf{B}) = \mathbf{C} \times (\mathbf{A} \times \mathbf{B})$ (3 marks)

QUESTION TWO (20 MARKS)

- a) If the vector field $\mathbf{F} = 2y\mathbf{i} z\mathbf{j} + x\mathbf{k}$,
 - i) Determine whether the point P(1,0,2) is a source, sink or neither. (3 marks)
 - ii) Evaluate $\int_{C} \mathbf{F} \times d\mathbf{R}$ along a curve $x = \cos t$, $y = \sin t$ and $z = 2\cos t$ from t = 0 to $t = \frac{\pi}{2}$ (7 marks)
- b) Show that the vector field $\mathbf{F} = (x^2 yz)\mathbf{i} + (y^2 xz)\mathbf{j} + (z^2 xy)\mathbf{k}$ is irrotational. Find a scalar function ϕ such that $\mathbf{F} = \nabla \phi$. (10 marks)

QUESTION THREE (20 MARKS)

a) A particle moves along the curve x = 2t², y = t² - 4 and z = 3t, determine the components of its velocity and acceleration at a time t = 1 in the direction of i + 3j - 2k (7 marks)
b) Given that A = x²yzi - 2xz³j + xz²k and B = 2zi + yj - x²k, determine (B × A) at

$$(1,0,-2)$$
 (7marks)

c) Verify Green's theorem in the plane for $\oint_C [(x^2 + y^2)dx - 2xydy]$, where *C* is the rectangle

bounded by y = 0, x = 0, y = b, x = a (6 marks)

QUESTION FOUR (20 MARKS)

a) If
$$\mathbf{F} = (5xy - 6x^2)\mathbf{i} + (2y - 4x)\mathbf{j}$$
, evaluate $\int_c \mathbf{F} \cdot d\mathbf{R}$ along a curve *C* in the *xy* plane,
 $y = x^3$ from point (1,1) to (2,8). (5 marks)
b) If $|\mathbf{a}| = 13$, $|\mathbf{b} + \mathbf{a}| = 16$ and $|\mathbf{b} - \mathbf{a}| = 14$, find $|\mathbf{b}|$ (5 marks)

c) Verify the Stoke's theorem for the function $\mathbf{F} = 3xy\mathbf{i} - \mathbf{y}^2\mathbf{j}$ integrated over the curve

$$y = 2x^2$$
 in the xy -plane from (0,0) to 1,2 (10 marks)

QUESTION FIVE (20 MARKS)

Given the space curve defined by the parametric equations $x(t) = -\frac{-t^3}{3}$, $y(t) = t^2$, $z(t) = \frac{t^3}{3}$, find:

i)	The unit tangent	(4 marks)
ii)	The principal normal	(4 marks)
iii)	The binormal	(4 marks)
iv)	The curvature	(4 marks)
v)	The torsion	(4 marks)