MACHAKOS UNIVERSITY

University Examinations 2018/2019
SCHOOL OF PURE AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTUARIAL SCIENCE

FIRST YEAR FIRST SEMESTER EXAMINATION FOR

DOCTOR OF PHILOSOPHY IN FINANCE
BMS 900: STATISTICS FOR BUSINESS I
DATE:
TIME:

INSTRUCTIONS:

Attempt Question ONE and Any Other Two Questions

QUESTION (COMPULSORY)(30 MARKS)

a) Table 1 shows a frequency distribution of the weekly wages of 65 employees of a company.

Table 1:

Wages (\$)	Number of employees
$250.00-259.99$	8
$260.00-269.99$	10
$270.00-279.99$	16
$280.00-289.99$	14
$290.00-299.99$	10
$300.00-309.99$	5
$310.00-319.99$	2

Determine
i) The class mark of the third class
ii) The size of the fifth-class interval
iii) The relative frequency of the third class
(6 marks)
b) Table 2 show the frequency distribution of heights (in inch) of 100 males at a university.

Table 2

Height (inch)	Number of students
$60-62$	5
$63-65$	18
$66-68$	42
$69-71$	27
$72-74$	8
Total	100

Find
i) the mean height
ii) the median height
iii) the modal class
c) The revenue from an investment by an investor in three ventures is expected to be Ksh 2 m , Ksh 4 m and Ksh 6 m respectively. Calculate
i) arithmetic mean,
ii) Geometric mean,
iii) Harmonic mean of the revenue

Explain the preferable mean to apply in this case.
d) i) Let the X be a discrete random variable with probability mass function $\cdot f(x)=c, \quad$ for $x=1,2,3,4$. Determine the value of c .

Hence, or otherwise calculate
ii) $E(X)$
iii) $\operatorname{Var}(\mathrm{X})$
e) Let a random variable X have the Poisson distribution with parameter m .
i) Write down the expression for the probability mass function
ii) Calculate the probability

$$
P(0<X<7)
$$

QUESTION TWO (20 MARKS)

a) Suppose a random variable X has a normal distribution for which the mean is 1 and the variance is 4 . Find the value of each of the following probabilities:
(i) $\mathrm{P}(\mathrm{X} \leq 3)$
(ii) $\mathrm{P}(\mathrm{X}>1.5)$
(iii) $\mathrm{P}(\mathrm{X}=1)$ (iv) $\mathrm{P}(2<\mathrm{X}<5)$.
(8 marks)
b) Evaluate $\int_{0}^{\infty} \exp \left(-3 \mathrm{x}^{2}\right) \mathrm{dx}$
c) i) Define , for a random variable X, its moment generating function $M(t)$.
ii) Show that $\operatorname{Var}(\mathrm{X})=\mathrm{M}^{\prime}{ }^{\prime}(0)-\left[\mathrm{M}^{\prime}(0)\right]^{2}$, where $\mathrm{M}^{\prime}(0)$ and $\mathrm{M}^{\prime}{ }^{\prime}(0)$ are the first and the second derivative of $M(t)$ with respect to t, respectively.
(8 marks)

QUESTION THREE (20 MARKS)

a) Consider Table 1 in Question 1. Calculate
i) the mean wage
ii) the variance and
iii) the standard deviation of the wages
b) Assuming that the data in Table 1 is a sample from some population, estimate the 95% confidence interval for the population mean.
c) i) Give the expression for calculating the median for a grouped data.
(4 marks)
ii) Using the formula specified in part (i), calculate the median wage for the data in Table 1.

QUESTION FOUR (20 MARKS)

a) Consider Table 2 in Question 1. Calculate
i) the mean deviation height, MD

Hence, determine the percentage of students' heights that fall within the ranges
ii) Mean \pm MD
iii) Mean $\pm 3 \mathrm{MD}$
b) i) Define the moment coefficient of skewness.
ii) Calculate the moment coefficient of skewness of the data in Table 2 in Question 1.

QUESTION FIVE (20 MARKS)

a) Let X denote a continuous random variable .
i) Define the distribution function of $\mathrm{X}, \mathrm{F}(\mathrm{x})$.

Hence
ii) Show that the probability

$$
\mathrm{P}(\mathrm{a}<\mathrm{X}<\mathrm{b})=\mathrm{F}(\mathrm{~b})-\mathrm{F}(\mathrm{a})
$$

b) The profits, in millions of Ksh., from some investment undertaking is random variable. However it is known to lie between zero and Ksh 4 million. Given that the probability density function of X is given by

$$
f(x)=c x, 0<X<4 ;
$$

Determine
i) c
ii) $\mathrm{P}(1<\mathrm{X}<2)$
iii) $P(X>2)$
iv) $\operatorname{Var}(\mathrm{X})$

