MACHAKOS UNIVERSITY COLLEGE

(A Constituent College of Kenyatta University)
 University Examinations for 2015/2016 Academic Year
 SCHOOL OF PURE AND APPLIED SCIENCES DEPARTMENT OF MATHEMATICS AND STATISTICS

SECOND SEMESTER EXAMINATION FOR DEGREE IN
BACHELOR OF EDUCATION (SCIENCE)
BACHELOR OF EDUCATION (ARTS)

SMA 432-PARTIAL DIFFERENTIAL EQUATION I

INSTRUCTION TO CANDIDATES

ANSWER QUESTION ONE AND ANY TWO OTHER QUESTIONS

QUESTION ONE COMPULSORY (30 MARKS)

a) Solve $2 y z d x+z x d y+x y(1+z) d z=0$
b) Verify the equation $(x+z) d x+z x^{2} d y+\left(y x^{2}-x\right) d z=0$ for integrebility and solve it.
c) Eliminate the arbitrary function f from the equation
$f\left(x^{2}+y^{2}+z^{2}, z^{2}-2 x y\right)=0$
(6 marks)
d) Show that the direction cosines of the tangent at the point (x, y, z) to the conic $a x^{2}+b y^{2}+c z^{2}=1, x+y+z=1$ are proportional to $(b y-c z, c z-a x, a x-b y)$.
e) Find the characteristics and the corresponding transport equations of the system

$$
\begin{align*}
& x y u_{x}-v_{y}=0 \\
& x u_{y}-v_{x}=0 \tag{7marks}
\end{align*}
$$

QUESTION TWO (20 MARKS)

a) Find the orthogonal trajectories on the cone $x^{2}+y^{2}=z^{2} \tan ^{2} \alpha$ of its intersections with the family of planes parallel to $z=c$.
b) Find the integral curves of the equations

$$
\begin{equation*}
\frac{d x}{x+z}=\frac{d y}{y}=\frac{d z}{z+y^{2}} \tag{6marks}
\end{equation*}
$$

c) Show that the Charpit's equation of the differential equation $\left(q^{2}+1\right) z^{2}=2 p x z+x^{2}$

Have an integral $q z=a x$ and find the corresponding complete integral of the equation.

QUESTION THREE (20 MARKS)

a) Show whether or not the set of equations

$$
\left.\begin{array}{l}
x=u+v \\
y=u-v \\
z=4 u v
\end{array}\right\} \text { represents a surface and if so, find the constraint equation. }
$$

b) Determine the condition for the line
$\frac{x-a}{l}=\frac{y-b}{m}=\frac{z-c}{n}$ to touch the quadric $\alpha x^{2}+\beta y^{2}+\gamma^{2}=1$.
(10 marks)

QUESTION FOUR (20 MARKS)

a) Find the integral surface of the curve given as

$$
\begin{equation*}
x\left(y^{2}+z\right) \frac{\partial z}{\partial x}-y\left(x^{2}+z\right) \frac{\partial z}{\partial y}=z\left(x^{2}-y^{2}\right) \tag{10marks}
\end{equation*}
$$

b) Find the equation of
i) The tangent line
ii) The normal plane to the curve

$$
\left.\begin{array}{l}
3 x^{2}+y^{2} z+2=0 \\
2 x z-x^{2} y-3=0
\end{array}\right\} \text { at the point } p(1,-1,1) .
$$

QUESTION FIVE (20 MARKS)

Verify the equation $\left(y^{2}+y z\right) d x+\left(x z+z^{2}\right) d y+\left(y^{2}-x y\right) d z=0$ is integrable and hence find its primitive (solution).

