

Machakos University College

(A Constituent College of Kenyatta University) UNIVERSITY EXAMINATIONS 2013/2014

SECOND YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN ELECTRICAL/ELECTRONICS ENGINEERING

ECU 203: ENGINEERING MATHEMATICS VIII

DATE: Tuesday 1st April, 2014
TIME: 2 Hours

INSTRUCTIONS :

ANSWER QUESTION ONE AND ANY OTHER TWO OF THE REMAINING QUESTIONS

QUESTION 1: COMPULSORY (30 MARKS)
a) Prove that

$$
\frac{d}{d x}\left(J_{o}(x)\right)=-J_{1}(x)
$$

(8 marks)
b) Suppose F is such that the Laplace transform $\mathcal{L}\{F(t)\}$ exists for $s>\alpha$.Then for any constant a, prove that

$$
\mathcal{L}\left\{e^{a t} F(t)\right\}=f(s-a)
$$

Where $s>\alpha+a$ and $f(s)$ denotes $\mathcal{L}\{F(t)\}$. Hence or otherwise find $\mathcal{L}\left\{e^{a t} t\right\}$
c) Determine inverse Laplace transform of the function

$$
f(s)=\frac{1}{s\left(s^{2}-1\right)}
$$

d) Solve the partial differential equation

$$
\frac{\delta^{2} u}{\delta x^{2}}-\frac{\delta^{2} u}{\delta x \delta y}-6 \frac{\delta^{2} u}{\delta y^{2}}=x+y
$$

QUESTION 2 (20 MARKS)

a) Using the series definition for J_{p}, show that
i. $\quad \frac{d}{d x}\left[x^{p} J_{p}(k x)=k x^{p} J_{p-1}(k x)\right]$
ii. $\frac{d}{d x}\left[x^{-p} J_{p}(k x)=-k x^{-p} J_{p+1}(k x)\right]$
wherek is a constant.
(8 marks)
b) Show that the alternative solution of the Bessel differential equation in terms of $J_{n}(x)$ is

$$
y=A J_{n}+B J_{n} \int \frac{1}{x J_{n}^{2}} d x
$$

where A and B are arbitrary constants.
(12 marks)

QUESTION 3 (20 MARKS)

a) Let F be a real valued function which is continuous for $t \geq 0$ and of exponential ordere ${ }^{\alpha t}$. If F^{\prime}, the derivative of F , is a piecewise continuous in every finite closed interval $a \leq t \leq$ b, then prove that the Laplace transform of $F^{\prime}(t)$ is given by $\mathcal{L}\left\{F^{\prime}(t)\right\}=s \mathcal{L}\{F(t)\}-F(0)$ fors $>\alpha$
(12 marks)
b) Find the inverse Laplace transform of the function

$$
f(s)=\frac{1}{s^{2}+6 s+13}
$$

using Laplace transform table.

QUESTION 4 (20 MARKS)

a) Find the trigonometric Fourier series of the function f defined by

$$
f(x)=|x|,
$$

on the interval $-\pi \leq x \leq \pi$
(8 marks)
b) Consider the function f defined by
$f(x)=2 x, \quad 0 \leq x \leq \pi$
Find
i. the Fourier sine series of f on $0 \leq x \leq \pi$ and ii. the Fourier cosine series of f on $0 \leq x \leq \pi$

QUESTION 5 (20 MARKS)

Solve he partial differential equation

$$
\alpha^{2} \frac{\delta^{2} y}{\delta x^{2}}=\frac{\delta^{2} y}{\delta t^{2}}
$$

Where $\alpha^{2}=\frac{\tau}{\rho}$ and y satisfies the initial conditions

$$
\begin{array}{ll}
y(0, t)=0, & 0 \leq t \leq \infty \\
y(\pi, t)=0, & 0 \leq t \leq \infty \\
y(x, 0)=\sin 2 x, & 0 \leq x \leq \pi \\
\frac{\delta y}{\delta t}(x, 0)=0, & 0 \leq x \leq \pi
\end{array}
$$

by the method of separation of variables.

