

Machakos University College

(A Constituent College of Kenyatta University) **UNIVERSITY EXAMINATIONS 2013/2014** SCHOOL OF COMPUTING AND APPLIED SCIENCES FIRST YEAR SECOND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION

SCO 111: DIFFERENTIAL CALCULUS FOR COMPUTER SCIENCE

DATE: Monday, 7th April, 2014

TIME: 8.30 a.m. - 10.30 a.m.

INSTRUCTIONS:

Answer Question **ONE** which is compulsory and any other **TWO**

Ouestion 1

(a) Given
$$f(x) = \frac{x}{x+1}$$
 and $g(x) = \frac{x}{1-x}$. Determine $(f,g)^{-1}$ (6 marks)

- (b) What dimensions of one litre oil circular cylinder can would minimize the material used to make it. (6 marks)
- (c) State L' Hopital's rule Use the L'Hopital's rule to evaluate $\lim_{x\to 1} \frac{\sin \pi x}{\sin(\pi x + x - 1)}$ (6 marks) (d) A point is moving on the graph of $y^3 = x^2$. When the point is at (-8,4) its y coordinate
- is decreasing at 3 units per sec. How fast is the x coordinate changing? (6 marks)

(e) Find
$$\frac{dy}{dt}$$
 given $y = \frac{2te^t}{\cos 2t}$ (6 marks)

Question 2

(a) (i) Given that $x^2 sin\theta - 3x^2 = sec\theta$ Determine the value of $\frac{dx}{d\theta}$ when $\theta = \pi$

(ii) If
$$y = 3e^{2x}\cos(2x - 3)$$
, verify that $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 8y = 0$ (12 marks)

(b) (i) Given $v = x^2 \cos 3x \ln 2x$

Find
$$\frac{dy}{dx}$$

(ii) Find the inflection point of
$$f(x) = x^3 - 6x^2 + 9x + 1$$
 (8 marks)

Question 3

(a) If
$$x^2 + 2xy - y^2 = 16$$
 show that $\frac{dy}{dx} = \frac{y+x}{y-x}$ (6 marks)

- (b) (i)Determine the gradient function of the curve $x^2 + 2xy 2y^2 + x = 2$ Hence determine the gradient of the curve at (-4, 1) (6 marks)
- (c) Differentiate the following functions
 - (i) $ln(2t^2 + 1)$

(ii)
$$e^{2x}(3\sinh 3x + 2\cosh 3x)$$
 with respect to x. (8 marks)

Question 4

(a) Determine the values of the gradients of the tangents drawn to the circle

$$x^2 + y^2 - 3x + 4y + 1 = 0$$
 at $x = 1$ correct to 4s.f. (8 marks)

(b) The equation of a normal to a curve at point (x_1y_1) is given by $y - y_1 = \frac{-1}{\frac{dy_1}{dx_1}}(x - x_1)$ Determine the equation of the asteroid $x = a \cos^3 \theta$, $y = a \sin^3 \theta$ at $\theta = \frac{\pi}{4}$ (12 marks)

Question 5

(a) Investigate the critical points on the curve

$$y = x^2 e^{-x}$$
 (6 marks)

(b) Given that $y = x^2 e^x$ Prove that $y_n = e^x [x^2 + 2nx + n(n-1)] \forall n > 0$ (8 marks)

(c) Given
$$z = f(x, y)$$
 and $z = x \cos(x + y)$ show that $\frac{d^2z}{dxdy} = \frac{d^2z}{dydx}$ (6 marks)