

Machakos University College

(A Constituent College of Kenyatta University)
UNIVERSITY EXAMINATIONS 2013/2014
SCHOOL OF COMPUTING AND APPLIED SCIENCES
FIRST YEAR SECOND SEMESTER EXAMINATION FOR THE DEGREE OF
BACHELOR OF EDUCATION
SCO 111: DIFFERENTIAL CALCULUS FOR COMPUTER SCIENCE

DATE: Monday, $7^{\text {th }}$ April, 2014
TIME: 8.30 a.m. - 10.30 a.m.

INSTRUCTIONS:

Answer Question ONE which is compulsory and any other TWO

Question 1

(a) Given $f(x)=\frac{x}{x+1}$ and $g(x)=\frac{x}{1-x}$. Determine $(f \cdot g)^{-1}$
(b) What dimensions of one litre oil circular cylinder can would minimize the material used to make it.
(6 marks)
(c) State L' Hopital's rule

Use the L'Hopital's rule to evaluate $\lim _{x \rightarrow 1} \frac{\sin \pi x}{\sin (\pi x+x-1)}$ (6 marks)
(d) A point is moving on the graph of $y^{3}=x^{2}$. When the point is at $(-8,4)$ its y coordinate is decreasing at 3 units per sec. How fast is the x coordinate changing?
(e) Find $\frac{d y}{d t}$ given $y=\frac{2 t e^{t}}{\cos 2 t}$

Question 2

(a) (i) Given that $x^{2} \sin \theta-3 x^{2}=\sec \theta \quad$ Determine the value of $\frac{d x}{d \theta}$ when $\theta=\pi$
(ii) If $y=3 e^{2 x} \cos (2 x-3)$, verify that $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+8 y=0$
(b) (i) Given $y=x^{2} \cos 3 x \operatorname{In} 2 x$

$$
\text { Find } \frac{d y}{d x}
$$

(ii) Find the inflection point of $f(x)=x^{3}-6 x^{2}+9 x+1$
(8 marks)

Question 3

(a) If $x^{2}+2 x y-y^{2}=16$ show that $\frac{d y}{d x}=\frac{y+x}{y-x}$
(b) (i)Determine the gradient function of the curve $x^{2}+2 x y-2 y^{2}+x=2$ Hence determine the gradient of the curve at $(-4,1)$
(c) Differentiate the following functions
(i) $\ln \left(2 t^{2}+1\right)$
(ii) $e^{2 x}(3 \sinh 3 x+2 \cosh 3 x)$ with respect to x.

Question 4

(a) Determine the values of the gradients of the tangents drawn to the circle

$$
\begin{equation*}
x^{2}+y^{2}-3 x+4 y+1=0 \text { at } x=1 \text { correct to } 4 \text { s.f. } \tag{8marks}
\end{equation*}
$$

(b) The equation of a normal to a curve at point $\left(x_{1} y_{1}\right)$ is given by $y-y_{1}=\frac{-1}{\frac{d y_{1}}{d x_{1}}}\left(x-x_{1}\right)$ Determine the equation of the asteroid $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$ at $\theta=\frac{\pi}{4}$

Question 5

(a) Investigate the critical points on the curve

$$
\begin{equation*}
y=x^{2} e^{-x} \tag{6marks}
\end{equation*}
$$

(b) Given that $y=x^{2} e^{x}$

Prove that $y_{n}=e^{x}\left[x^{2}+2 n x+n(n-1)\right] \forall n>0$
(c) Given $z=f(x, y)$ and $z=x \cos (x+y)$ show that $\frac{d^{2} z}{d x d y}=\frac{d^{2} z}{d y d x}$

