

Machakos University College

(A Constituent College of Kenyatta University)
UNIVERSITY EXAMINATIONS 2013/2014
SCHOOL OF COMPUTING AND APPLIED SCIENCES

SECOND YEAR SECOND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN COMPUTING AND APPLIED SCIENCES

SMA 230: VECTOR ANALYSIS
DATE: 9/4/2014
TIME: 8.30 a.m. - 10.30 a.m.

Instructions: Answer question ONE and any other TWO questions.

Question 1

(a) Find the projection of $\boldsymbol{i}+2 \boldsymbol{j}-\boldsymbol{k}$ in the direction of the vector $\boldsymbol{i}+2 \boldsymbol{j}+2 \boldsymbol{k}$.(3mks)
(b) Find the equation of the plane through the points $\boldsymbol{P}_{\mathbf{1}}(2,-1,1), \boldsymbol{P}_{\mathbf{2}}(3,2,-1)$, and $\boldsymbol{P}_{\mathbf{3}}(-1,3,2)$ (4 mks)
(c) If $\boldsymbol{A}=x^{2} y z \boldsymbol{i}-2 x z^{3} \boldsymbol{j}+x z^{2} \boldsymbol{k}$

$$
\boldsymbol{B}=2 z \boldsymbol{i}+4 y \boldsymbol{j}-x^{2} \boldsymbol{k}
$$

Find
$\frac{\partial^{2}}{\partial x \partial y}(\boldsymbol{A} x \boldsymbol{B}) \operatorname{at}(1,0,-2)(5 \mathrm{mks})$
(d)
i. When is a vector said to be irrotational? (1mk)
ii. Find the constants $\mathrm{a}, \mathrm{b}, \mathrm{c}$ so that

$$
\boldsymbol{V}=(x+2 y+a z) \boldsymbol{i}+(b x-3 y-z) \boldsymbol{j}+(4 x+c y+2 z) \boldsymbol{k}
$$

Is irrotational. (4mks)
(e) If $\boldsymbol{A}=\left(3 x^{2}+6 y\right) \boldsymbol{i}-14 y z \boldsymbol{j}+20 x z^{2} \boldsymbol{k}$, evaluate
$\int_{c} A . d r$ from $(0,0,0)$ to $(1,1,1)$ along the following paths c
i. $x=t, y=t^{2}, z=t^{3}(6 \mathrm{mks})$
ii. The straight line from $(0,0,0)$ to $(1,0,0)$ then to $(1,1,0)$ and then to ($1,1,1$). ($4 m k s$)
iii. The straight line joining ($0,0,0$) and ($1,1,1$) (3mks)

Question 2

Find the volume of the parallelopiped
(a) With edges $\boldsymbol{i}+\boldsymbol{j}+\boldsymbol{k}, \boldsymbol{j}+\boldsymbol{k}$ and $2 \boldsymbol{k}$. (3mks)
(b) The acceleration of a particle at any time $t \geq 0$ is given by

$$
\boldsymbol{a}=\frac{d v}{d t}=12 \cos 2 t \boldsymbol{i}-8 \sin 2 t \boldsymbol{j}+16 t \boldsymbol{k}
$$

If the velocity, \mathbf{V} and displacement, \mathbf{r} are zero at $t=0$. Find \mathbf{V} and \mathbf{r} at any time, $\mathrm{t} .(8 \mathrm{mks})$
(c) Verify the Green's Theorem in the plane for $\oint_{c} s\left(x y+y^{2)} d x+x^{2} d y\right.$ where c is the closed curve if the region bounded by $y=x$ and $y=x^{2}$ (9 mks)

Question 3

(a) Prove the diagonals of a parallelogram bisect each other. (5 mks)
(b) If $R(u)=\left(u-u^{2}\right) \boldsymbol{i}+2 u^{3} \boldsymbol{j}-3 \boldsymbol{k}$ find $\nabla x F$
i. $\quad \int R(u) d u$ (3 mks)
ii. $\quad \int_{1}^{2} R(u) d u(3 \mathrm{mks})$
(c)
i. Show that $\boldsymbol{F}=\left(2 x y+z^{3}\right) \boldsymbol{i}+x^{2} \boldsymbol{j}+3 x z^{2} \boldsymbol{k}$ is a conservative force field. (3mks)
ii. Find the scalar potential. (4 mks)
iii. Find the work done in moving an object in the field from $(1,-2,1)$ to $(3,1,4)$. (2 mks)

Question 4.
(a) If \mathbf{a} and \mathbf{b} are non-collinear vectors and

$$
\begin{gathered}
\boldsymbol{A}=(x+4 y) \boldsymbol{a}+(2 x+y+1) \boldsymbol{b} \\
\boldsymbol{B}=(y-2 x+2) \boldsymbol{a}+(2 x-3 y-1) \boldsymbol{b}
\end{gathered}
$$

Find x and y if $3 \boldsymbol{A}=2 \boldsymbol{B}$ (5mks)
(b) State and prove the sine rule. (7 mks)
(c) If $\boldsymbol{A}=x z^{3} \boldsymbol{i}-2 x^{2} y z \boldsymbol{j}+2 y z^{4} \boldsymbol{k}$.

Find $\nabla \times \boldsymbol{A}$ (or curl $\mathbf{A})$ at the point $(1,-1,1)$. (4mks)
(d) If $\boldsymbol{A}=x^{2} z \boldsymbol{i}-2 y^{3} z^{2} \boldsymbol{j}+x y^{2} z^{2} \boldsymbol{k}$, find $\nabla . \boldsymbol{A}$ (or div. \mathbf{A}) at the point ($1,-1,1$).(4mks)

QUESTION 5.

(a) Show that the acceleration of a particle moving along a space curve with velocity V is given by

$$
\mathrm{a}=\frac{\mathrm{dv}}{\mathrm{dt}} \mathrm{~T}+\mathrm{V}^{2} \mathrm{KN}
$$

where T is the unit tangent vector to the space curve. N the unit principal normal and K is the curvature

For a particle moving along a space curve $X=3 \operatorname{cost} t, Y=3 \sin t, Z=4 t$. Find the normal and tangential components of the acceleration. (15 marks)
(b) State the Frenet-serret formulae. Find the curvature and torsion of the space curve in (a) above. (5 marks)

