

Machakos University College
(A Constituent College of Kenyatta University)
UNIVERSITY EXAMINATIONS 2013/2014
SCHOOL OF COMPUTING AND APPLIED SCIENCES
SECOND YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE
SCO 213: NUMERICAL ANALYSIS
DATE: 8/3/2014 TIME: 8.30 a.m. - 10.30 a.m.

INSTRUCTIONS:

Answer question ONE which is Compulsory and any other TWO questions

Question One (Compulsory)

(a) The true values of two quantities x and y are 4.00 and 1.00 respectively. If their computed values are 4.04 and 1.02 respectively determine the absolute error, relative error and percentage error in their product.
(b) The function $f(x)=e^{x} \cos x$ is evaluated at $x=1$. Find the error in $f(x)$ if the x used in the computation has an error of 0.01 .
(5 marks)
(c) A function takes on the following values:$f_{0}=0, f_{1}=41, f_{2}=79, f_{3}=a, f_{4}=146$.
(i) Express $\Delta^{4} f_{0}$ using functional values $f_{0}, f_{1}, f_{2}, f_{3}, f_{4}$, where Δ is the forward difference operator.
(ii) If $\Delta^{4} f_{0}=0$ use the expression in (i) above and the values of the function given to find the value of a. (i.e. f_{3}).
(2 marks)
(d) Construct a backward difference table for $f(x)=x^{2}-3 x^{2}+5 x-7$ for $x=$ $-1,0,1,2,3,4,5$.
(5 marks)
(e) By letting h be the interval of differencing show that $\left(\frac{\Delta^{2}}{E}\right) x^{3}=6 x h$
(f) Use the trapezium rule to estimate the area from $\mathrm{x}=0.2$ to $\mathrm{x}=1$ for the curve $f(x)=$ $x^{2}+x$ using $n=4$
(6 marks)

Question Two

(a) A function takes the following values shown in the table below:

x	0	1	2	3	4	5	6
$\mathrm{f}(\mathrm{x})$	5	6	13	32	69	130	221

(i) Construct a forward difference table for the function.
(7 marks)
(ii) Using the constructed table find $f(7)$ and $f(8)$.
(4 marks)
(b) Given a function $f(x)$ such that $f(0)=-3, f(1)=-5, f(3)=18$. Find the $2-$ degree lagrange interpolating polynomial.
(9 marks).

Question Three

(a) Evaluate $\int_{0}^{12} \frac{1}{1+x^{2}} d x$ by using Simpson's $1 / 3$ rule taking $\mathrm{n}=6$.
(8 marks)
(b) Find the exact value of $\int_{0}^{12} \frac{1}{1+x^{2}} d x$ and compute the percentage error introduced in (a) above.
(5 marks)
(c) Use Newton-Raphson method to find the real root near o of the equation $x^{2}+x-5=0$ to 2d.p.

Question Four

(a) Given that Δ is the forward difference operator and ∇ is the backward difference operator, show that $(1+\Delta)(1-\nabla)=1$
(b) Relate the shift operator E to the differential operator D starting with a taylor series using h as the step size. (12 marks)
(c) Using (b) above deduce the relationship between the operator Δ and D .

Question Five

(a) Use the bisection method to determine the root of $f(x)=e^{-x}-x$ giving your answer to 4 decimal places.
(10 marks)
(b) Apply lagranges interpolation formula to find apolynomial which passes through the points $(0,-20)(1,-12)(3,-20)$ and $(4,-24)$.

