

MACHAKOS UNIVERSITY

University Examinations for 2018/2019 Academic Year

SCHOOL OF EDUCATION

DEPARTMENT OF EDUCATIONAL MANAGEMENT AND CURRICULUM STUDIES APRIL SESSION EXAMINATION FOR DOCTOR OF PHILOSOPHY EDUCATIONAL ADMINISTRATION/ EDUCATIONAL PSYCHOLOGY ECC 901: ADVANCED STATISTICS IN EDUCATION.

DATE: 8/8/2019 TIME: 8.30-11.30 AM

INSTRUCTIONS:

Answer QUESTION ONE and any other TWO QUESTIONS

QUESTION ONE

In the regression equation

$$y = a + bx$$

$$b = \frac{\sum xy - 1/n(\sum x)(\sum y)}{\sum x^2 - 1/n(\sum x)^2}$$

And
$$a = y - bx$$

Explain the symbols $\sum xy$, $\sum x$, $\sum y$, $\sum x^2$, $(\sum x)^2$

Given:

X	y
2	3
4	5
5	6
6	8
12	14
15	18

Determine the regression line

(15 marks)

QUESTION TWO

$$x^2 = \sum \frac{(0-E)^{-2}}{E}$$
 $\sum = \frac{RiCi}{N}$

Explain the symbols $0, E (0-E)^2$, Ri and Ci

Given

	Pass	Fail	
Boys	35	15	50
Girls	20	30	50
	55	45	100

Complete the table below

(8 marks)

0	E	(0-E)	$(0-E)^2$	
35				
15				
30				
20				

How significant is the x^2 value at $\approx =0.05$? (3 marks)

 $\emptyset = \sqrt{\frac{x^2}{N}}$ comment on the value of \emptyset (4 marks)

QUESTION THREE

In the marri Whitney U-test

$$u_1 = n_1 n_2 + \frac{n_1 + (n_1 + 1)}{2} - r_1$$

$$u_2 = n_1 n_2 + \frac{n_2 + (n_2 + 1)}{2} - r_2$$

$$z = \frac{u - (n_1 + n_2 + 1)}{z}$$

$$\sqrt{\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}}$$

- a) Explain the meaning of $n_1 n_2 r_1 r_2 u_1 z_1$ (8 marks)
- b) Given two samples

Sample 1 43 31 50 53 66 68

Sample 2 6 10 13 14 29 42 50

Compute

i.
$$U_1$$
 (4 marks)

ii.
$$U_2$$
 (4 marks)

QUESTION FOUR

Complete the frequency table below

(9 marks)

X	F	FX	X^2	FX ²	
5	5				
15	8				
25 35 45 55 65	15				
35	20				
45	40				
55	40				
65	20				
75	15				
85	8				
95	5				

Find i)
$$\sum fx$$
 (1 mark)

ii)
$$\sum fx^2$$
 (1 mark)

iii)
$$var = \frac{\sum fx^2 - \frac{\left(\sum fx\right)^2}{n}}{n-1}$$
 (5 marks)

iv) The standard deviation. (4 marks)

QUESTION FIVE

The kruskal – wallis – H test is calculated using the expression:

$$H = \frac{12}{n(n+1)} \sum_{i=1}^{\infty} \frac{r_i^2}{n_i} - 3(n+1)$$

- a) Explain the symbols $n n_i R_i^2$ and $\frac{\sum_{i=1}^{n} R_i^2}{n_i}$ (6 marks)
- b) Work out the kruskal wallis h- statistic for the data below (8 marks)

G1: 271 282 257 248 262

G2: 252 275 302 268 276

G3: 260 255 239 246 266

G4: 279 242 297 270 158

c) Interpret the value you have calculated (6 marks)