

MACHAKOS UNIVERSITY COLLEGE

(A Constituent College of Kenyatta University) University Examinations for 2013/2014

DEPARTMENT OF COMPUTING AND APPLIED SCIENCES

End of Term Examination for Diploma in Information and Communication Technology

Module I

Operating Systems

Date: 24th March, 2014

Time: 2.00p.m. – 4.00 p.m.

Instructions Answer any **five** questions

Question 1

- a. Explain each of the following with reference to inter-process communication:
 - i. Critical sections
 - ii. Monitor
 - iii. Busy waiting
 - iv. Kernel
 - v. Mutex
 - vi. Message passing (12 marks)
- b. With the aid of a diagram, describe the three-state process transitions as applied in process management. (6 marks)
 c. State **four** objectives of process management. (2 marks)

Question 2

a. The following series of processes with the given estimated run-times arrive in the READY queue in the order shown

Process	Arrival time	Estimated run time
А	0	10
В	1	50
С	3	2
D	4	100
E	7	5

Assuming FCFS and SJF scheduling policies are used, for each policy:-

- i. Draw a Gantt chart to show the order of executions.
- ii. Calculate the waiting time for each process.

- iii. Calculate the wait-time/run-time ratio for each process.
- iv. Calculate the average turn around time.
- v. Identify **one** disadvantage of each of the policies (14 marks)
- b. Describe **three** dynamic memory allocation techniques. (6 marks)

Question 3

a.	A group of ICT module 1 students in Machakos University College were carrying out an		
	assignment about causes of process termination in operating systems.	Explain four possible	
	causes they my have written in their report.	(8 marks)	
b.	Describe three benefits of multiprogramming.	(6 marks)	
c.	Explain the term <i>swapping</i> as used in memory management.	(2 marks)	

d. State **four** functions of an operating system. (4 marks)

Question 4

- a. Describe the following memory management techniques:
 - i. Contiguous allocation

	ii. Non contiguous allocation	(4 marks)
b.	Distinguish between command language and job control languages.	(4 marks)
c.	Describe the use of <i>semaphores</i> in management of concurrent process.	(2 marks)
d.	Define the term virtual machine as used in operating systems.	(2 marks)
e.	Explain four strategies of preventing deadlocks in computer systems.	(8 marks)

Question 5

- a. Explain the following terms with reference to process management as used in operating systems:
 - i. Thread
 - ii. Process
 - iii. Through put
 - iv. Turn around time
 - v. Response time
 - b. Explain the following types of operating systems:
 - i. Server operating systems
 - ii. Embedded operating systems
 - iii. Multiprocessor operating systems
 - iv. Network operating systems (8 marks)

(10 marks)

c. Outline **two** characteristics of the third generation operating systems. (2 marks)

Question 6

a. Study the following algorithm of concurrent memory requests by two processes and answer the questions that follow

Time	process 1	process 2
T1	No request	No request
T2	Request and hold 80 kb	Request and hold 70kb
T3	No request	No request
T4	Request 110kb	Request 120kb

Assuming a total of 250kb is available for allocation:

i.	i. Identify the most probable time at which a deadlock may occur. Justify your answer				
					(2 marks)
ii.	Suggest two	ways of avoiding	the deadlock.		(2 marks)
iii.	Explain four	conditions that m	ust apply for a deadlock	to take place in a comp	uter system.
					(8 marks)
b.	b. Differentiate between virtual and physical memory addressing as used in operating system				ting systems.
					(4 marks)
c.	Explain the <i>la</i>	ayered structure of	f an operating system.		(4 marks)
Que	stion 7				
a.	Distinguish be	etween preemptive	and non-preemptive sch	eduling policies.	(4 marks)
b. 7	The schemes u	sed to achieve virt	ual memory managemen	t are pagination, segme	ntation and
	overlay. Desc	ribe each techniqu	e with the aid of diagram	18.	(15 marks)
c. l	Define the tern	n <i>process manager</i>	nent as used in operating	systems.	(1 mark)
Que	stion 8				
a. 1	a. With the aid of a diagram, describe the <i>memory hierarchy</i> in computer systems. (4 marks)				
b. 1	b. Explain the following terms in relation to deadlocks:				
	i.	Two phase lockin	ng		
	ii.	Starvation			
	iii.	Safe and unsafe s	states		(6 marks)
c.	A system has	four processes and	l five allocatable resourc	es. The current allocation	on and
	maximum nee	eds are as follows:			
		Allocated	Maximum	Available	
	Process A	10211	11213	0 0 x 1 1	
	Process B	20110	22210		
	Process C	11010	21310		
	Process D	11110	1 1 2 2 1		
Dete	ermine the sma	llest value of x for	which this is a safe state	e? Show your working.	

(10 marks)