

MACHAKOS UNIVERSITY

University Examinations for 2018/2019 Academic Year

SCHOOL OF AGRICULTURAL SCIENCES

DEPARTMENT OF AGRICULTURAL EDUCATION AND EXTENSION

SECOND YEAR, SECOND SEMESTER EXAMINATION FOR BACHELOR OF AGRICULTURAL EDUCATION AND EXTENSION, BACHELOR OF EDUCATION SCIENCES AND BACHELOR OF EDUCATION (SPECIAL NEEDS)

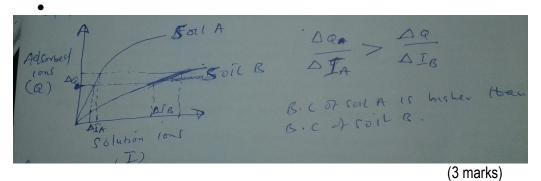
SOL 201: SOIL FERTILITY AND PLANT NUTRITION MARKING SCHEME

Date:

Time:

Instructions: Answer question one and two other questions

Section A: 30 MARKS (COMPULSORY)


Question ONE:

- (a) Explain the following factors that affect availability of nutrients in the soil
- (i) Complementary cation effect
 - It is the the influence of one adsorbed cation on the release of another from the surface of a colloid
 - NH4⁺ will replace much more Na⁺ than Al³⁺ and Ca²⁺
 - The soil will be rich in NH⁺ which goes into solution
 - The Al³⁺ and Ca²⁺ ions will be the complementary cations in this case
 - Na⁺ >K⁺=NH₄⁺>Mg²⁺>Ca²⁺>Al³⁺ i.e Sodium ions will be released most easily than Al ions.

(ii) Soil buffering capacity

(5 marks)

- It is the ability of soil to replenish nutrients absorbed by plants (1 mark)
- Described as the ratio of concentration of adsorbed ions to solution ions (1 mark)
- Amount of ions in adsorption complex is called quantity factor (Q) (1 mark)
- Amount of ions in soil solution is called intensity factor (I) (1 mark)

(b) Differentiate between passive and active ion uptake in plants

- > Active ion uptake
- Occurs at plasmalemma membrane
- Transport occurs against electronic chemical gradient
- It requires energy
- Takes place through ion carrier mechanism

0 10	m - carrier mec	cancion . P
Craim	A 1:0=	
GREEN		Freevior
	MI P2 - TIM	
-	THE THE	m
Plasmeetering!	mensione of	Me I I R R'
appante mp	plasmalemma.	P n n +

(10 marks)

(3 marks)

- Passive ion uptake
 - Does not go beyond casparian strip (occurs outside plasmalemma)
 - Epidermal and cortical cells form the apparent free space which provide negative charge
 - Uptake occurs through ion exchange and diffusion
 - It does not require energy and it is non-selective
 - Plasmalemma membrane and casparian stri[are the boundary mambranes of diffusion and ion exchange

(c) State the functions of nitrogen element in plants

- An essential element of all amino acids. Amino acids are the building blocks of proteins.

- A component of nucleic acids, which form the DNA of all living things and holds the genetic code.

- Nitrogen is a component of chlorophyll, which is the site of carbohydrate formation (photosynthesis).

(d) Certain grams of Oven dried soil was leached with 100 ml of 1 N Ammonium Acetate solution and the resultant solution (Leachate A) was filtered and stored for further analysis. The remaining soil was then extracted with 100 ml of 1 N Potassium Chloride solution and the Filtrate (Leachate B) was analyzed. Show the chemical reaction of the above experiment.

(5 marks) H+ NH4+ H+ Ca²⁺ NH4+ Ca²⁺ Ma₂₊ $+9 \text{ NH}_4\text{OAC} = 9 \text{ ions}$ Ma₂₊ + 9 OAC-K+ K+ soil Al³⁺ Al³⁺ 9 ions Leachate A for base saturation Soil NH⁴⁺ k+ NH4+ 9 KCl =k+ + 9 NH4+ + 9 CI-NH4+ k+ 9 ions Leachate B for CEC Soil

SECTION B: 40 MARKS (Answer any two questions)

Question TWO:

(a) Explain the factors which influence the amount of nutrients leaching plant roots by mass flow (3 marks)

- Rate of water flow determined by soil moisture
- Water consumption by plants determined by transpiration and temperature
- Average nutrient concentration in the soil water

(b) Describe the factors that influence nutrient diffusion in soils (12 marks)

- Cross-sectional area of diffusion (It is influenced by the roots intensity)
- Concentration gradient (The lower the concentration the higher the gradient)
- Diffusion coefficient in water (How fast or slow the ion can move in water)
- Volumetric soil water content (As water content increases, diffusion rate increases)
- Soil buffering capacity (The higher the buffering capacity, the lower the rate of diffusion)
- Tortuosity factor (The higher the clay content, the higher the tortuosity)

(c) Explain why monocots survive in monocot-dicot intercrop system when potassium element is deficient in the soil (5marks)
Because legumes (dicots) tend to absorb divalent cations more preferentially over monocots (grasses) and vice versa.

Question THREE:

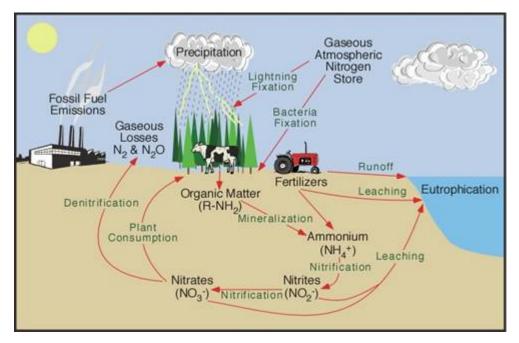
(a) Describe the classes of inorganic Nitrogen fertilizers. Give examples in each. (12 marks)

- Nitrate based fertilizer eg calcium nitrate and sodium nitrate
- Ammonium based fertilizers eg ammonium sulphate and ammonium chloride
- Ammonium nitrates based fertilizers eg ammonium nitrate, calcium ammonium nitrate(CAN),ammonium sulphate nitrates
- Amides based fertilizers eg Urea
- (b) Explain the fate of Nitrogen fertilizers in the soil.
- Adsorption in adsorption complex
- Get in to soli solution for plants or leaching
- Get fixed into layers of 2:1 clay minerals
- Undergo oxidation to form nitrates which is very mobile in the soil

Question FOUR:

- (a) Explain the advantage of compound fertilizers over single fertilizers (12 marks)
- There are fewer man hours required to apply compound fertilizers than individual fertilizers
- They have better physical conditions than individual fertilizers
- Residual acidity can be conveniently and effectively be controlled than when individual fertilizer is applied
- When small amounts are required can be evenly applied than when individual fertilizer is applied
- No filler material may be required when compound fertilizer is required
- Less care is needed when compound fertilizers are applied than individual
- (b) State eight (8) factors that are considered in selecting an appropriate fertilizer application method (8 marks)
- The type of soil
- Soil moisture content
- Soil foxing power of different nutrients
- Soil previous management
- The crop to be treated
- Crop root development
- Crop ability to extract nutrients from the soil
- Kind and amount of fertilizer to be used

Question FIVE:


(a) Discuss how you can maintain and improve organic matter in the soil (8 marks)

- Through application of animal manure where farmyard manure can be applied which supply plant nutrients and improve soil structure
- Through incorperating straw into the soil which improves C:N ratio
- Through use of green manures which promotes rapid growth and vigorous root development
- Through use of compost manure which improve plant nutrients and increase crop yield
- (c) Describe the Nitrogen cycle

(12 marks)

(8 marks)

The Nitrogen Cycle

Gains of Nitrogen to the Soil

- Biological and Atmospheric Fixation: Conversion of atmospheric nitrogen to ammonium which is subsequently available for plant uptake
- Direct additions of commercial and organic fertilizers

Transformations in the Soil

- Mineralization: Conversion of organic nitrogen to ammonium
- Nitrification: Conversion of ammonium to nitrate

Losses of Nitrogen from the Soil

- Denitrification: Conversion of nitrate to atmospheric forms of nitrogen
- Volatilization: Loss of gaseous ammonia to the atmosphere
- Run-off
- Leaching
- Consumption by plants and other organisms