

(A Constituent College of Kenyatta University) University Examinations for 2015/2016 Academic Year

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

SECOND SEMESTER EXAMINATION FOR DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING

MATHEMATICS VI

DATE: 1/8/2016

TIME: 2:00 – 4:00 PM

INSTRUCTIONS:

Answer <u>QUESTION ONE</u> and Any other <u>TWO</u> Questions

1 a) Evaluate

i) $I = \int_{1}^{2} \int_{2}^{4} (x+2) dx dy$ (4 mark	(4 marks)
--	-----------

ii)
$$I = \int_{1}^{3} \int_{-1}^{1} \int_{0}^{2} (3x - y - 2z) dx dy dz$$
 (6 marks)

b) Find from first principals the laplace transform of:-

i) 3 (4 marks)

- c) Find the inverse Laplace transform of:
 - i) $\frac{9s-8}{s^2-2s}$ (5 marks)

ii)
$$\frac{2s^2 - 6s - 1}{(s - 3)(s^2 - 2s + 5)}$$
 (6 marks)

2 a) Evaluate
$$I = \int_{1}^{2} \int_{0}^{3} x^{2} y \, dx dy$$
 (6 marks)

b) Determine I =
$$\int_{1}^{2} \int_{0}^{\pi} (3 + \sin\theta) d\theta dr$$
 (6 marks)

c) Find the area enclosed by the curves
$$y^2 = 9x$$
 and $y_1 = \frac{x^2}{9}$ (8 marks)

3. a) Evaluate
$$I = \int_{1}^{2} \int_{0}^{3} \int_{1}^{3X} y \, dy dx dz$$
 (9 marks)

b) Find the volume of the solid bounded by the planes z = 0, x = 1, x = 2, y = -1, y = 1 and the surface $z = x^2 + y^2$ (11 marks)

4. a) Derive the Laplace transform of the function $F(t) = e^{2t} cos 3t$ from first principals.

(8 marks)

b) Solve the differential equation $(D^2 - 3D + 2) y = e^{3t}$ given that when t = 0, y = 1and $\frac{dy}{dx} = 0$. (12 marks)

5. a) Find from first principals the Laplace transform of
$$e^{2t}$$
. (4 marks)

b) Determine the inverse Laplase transform of
$$\frac{4s^2 - 5s + 6}{(s+1)(s^2+4)}$$
 (6 marks)

c) Use Laplace transforms to solve the differential equation

$$\frac{d^2x}{dt^2} - 3\frac{dx}{dt} + 2x = 2e^{3t}$$
 given that at $t = 0, x = 5$ and $\frac{dx}{dt} = 7$ (10 marks)

(A Constituent College of Kenyatta University) University Examinations for 2015/2016 Academic Year

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

SECOND SEMESTER EXAMINATION FOR DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING

MATHEMATICS IV

DATE: 1/8/2016

TIME: 2:00 – 4:00 PM

INSTRUCTIONS:

Answer <u>QUESTION ONE</u> and Any other <u>TWO</u> Questions

1	a)	Evaluate	
		i) $\int (x^6 - 1) dx$	(2 marks)
		ii) $\int 3e^{4x} dx$	(3 marks)
	b)	Determine	
		i) I = $\int (\frac{1}{t^2} + 3 + 2t) dt$	(4 marks)
		ii) I = $\int (4e^{2x+4} + \frac{3}{4x}) dx$	(4 marks)
	c)	Evaluate	
		i) $I = \int_{1}^{2} \int_{2}^{4} (x+2) dx dy$	(5 marks)
		ii) I = $\int_{1}^{3} \int_{-1}^{1} \int_{0}^{2} (3x - y - 2z) dx dy dz$	(6 marks)

	d)	A curve passes through the point $(3,-1)$ and its gradient function is $2x + 5$. Find its		
		equation.	(6 marks)	
2	a)	Evaluate $I = \int_{1}^{2} \int_{0}^{3} x^{2} y dx dy$	(6 marks)	
	b)	Determine I = $\int_{1}^{2} \int_{0}^{\pi} (3 + \sin\theta) d\theta dr$	(6 marks)	
	c)	Find the area enclosed by the curves $y^2 = 9x$ and $y_1 = \frac{x^2}{9}$	(8 marks)	
3.	a)	Evaluate I = $\int_{1}^{2} \int_{0}^{3} \int_{1}^{3X} y dy dx dz$	(9 marks)	
	b)	Find the volume of the solid bounded by the planes $z = 0$, $x = 1$, $x = $		
		1 and the surface $z = x^2 + y^2$	(11 marks)	
4.	a)	Evaluate		
		i) $\int 2x(3x^2 + 5)dx$)	(3 marks)	
		ii) $\int x \cos 3x dx$	(4 marks)	
		iii) $\int \frac{x-8}{x^2-x-2} dx$	(4 marks)	
	b)	Find the area bounded by $y = \frac{12}{5}x^2$, the x- axis and the ordinate at	x = 5.(9m)	
5.	a)	Evaluate the double integral		
		$3/\sqrt{2}$		

 $\int_{0}^{3/2} \int_{0}^{\sqrt{9-y^2}} (x^2 + y^2) \, dx \, dy.$ (8 marks) Find the volume V of the solid bounded on top by the surface $z = 5 - x^2 - y$, below

b) Find the volume V of the solid bounded on top by the surface $z = 5 - x^2 - y$, below by the x-y plane and the cylinder $x^2 + y^2 = 16$. (12 marks)

(A Constituent College of Kenyatta University) University Examinations for 2015/2016 Academic Year

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

SECOND SEMESTER EXAMINATION FOR DIPLOMA IN MECHANICAL ENGINEERING

MATHEMATICS III

DATE: 3/8/2016

TIME: 8:30 – 10:30 am

INSTRUCTIONS:

Answer <u>QUESTION ONE</u> and Any other <u>TWO</u> Questions

QUESTION ONE

- a) Given the matrix $M = \begin{bmatrix} 3 & -6 & 2 \\ 6 & 2 & -3 \\ 2 & 3 & 6 \end{bmatrix}$ find MM^{T} and hence state M^{-1} (3 marks)
- b) Find the inverse of the matrix
 - $p = \begin{bmatrix} 4 & 8 & 3 \\ 3 & 5 & 2 \\ 2 & 4 & 3 \end{bmatrix}$ (8 marks)
- c) Use Cramer's rule to solve the simultaneous equation

$$2x + 3y - z = -6$$

 $x + y - 4z = -5$
 $5x + 2y + z = 17$ (9 marks)

Examination Irregularity is punishable by expulsion

QUESTION TWO

a) Evaluate the double integral

$$\int_0^{3/2} \int_0^{\sqrt{9-y^2}} (x^2 + y^2) \, dx \, dy. \tag{8 marks}$$

b) Find the volume V of the solid bounded on top by the surface $z = 5 - x^2 - y$, below by the x-y plane and the cylinder $x^2 + y^2 = 16$. (12 marks)

QUESTION THREE

- a) Solve the differential equation $xy\frac{dy}{dx} = x^2 + y^2$ given that when x = 1 y = 0 (9 marks)
- b) Use the method of undetermined coefficient to solve the differential equation

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 10y = \sin 3x$$
 Given that $y = 0$ and $\frac{dy}{dt} = 1$ when $t = 0$ (11 marks)

QUESTION FOUR

a) i) Derive fourier series co efficients for half range sine series with a period T.

(5 marks)

ii) Given
$$f(x) = \begin{cases} 3t & 0 < t > 1 \\ 3 & 1 < t > 2 \\ f(t+2) \end{cases}$$
 find the fourieir series (15 marks)

QUESTION FIVE

Given that
$$f(x) = \begin{cases} x & 0 < x > 2\pi \\ 0 & elswhere \\ f(x + 2\pi) \end{cases}$$

i) Sketch the function between $-4\pi < x > 4\pi$ (5 marks)

ii) Obtain the fourier series of the function (15 marks)

(A Constituent College of Kenyatta University) University Examinations for 2015/2016 Academic Year

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

SECOND SEMESTER EXAMINATION FOR DIPLOMA IN EDUCATION

SMA 0205: VECTOR ANALYSIS

DATE:	SCHOOL	BASED
DATE:	SCHOOL	BASED

TIME:

INSTRUCTIONS:

Answer <u>QUESTION ONE</u> and Any other <u>TWO</u> Questions

1.	a)	Define a		
		i) Scalar product	(2 marks)	
		ii) Vector product	(2 marks)	
	b)	Given that $\mathbf{P} = 5\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ and $\mathbf{Q} = 2\mathbf{i} + 5\mathbf{j} - 6\mathbf{k}$ evaluate		
		i) P.Q	(3 marks)	
		ii) P x Q	(4 marks)	
	c)	If $\mathbf{A} = (\mathbf{u}+3)\mathbf{i} - (2\mathbf{u}+\mathbf{u}^2)\mathbf{j} + 2\mathbf{u}^3\mathbf{k}$ determine		
		i) $\frac{dA}{du}$ ii) $\frac{d^2A}{du^2}$	(4 marks)	
	d)	If $\mathbf{F} = 2\mathbf{u}\mathbf{v}\mathbf{i} + (\mathbf{v}^2 - 5\mathbf{u})\mathbf{j} - (2\mathbf{u} + \mathbf{v}^2)\mathbf{k}$ determine		
		i) $\frac{\partial F}{\partial u}$ ii) $\frac{\partial^2 F}{\partial u^2}$ iii) $\frac{\partial^2 F}{\partial u \partial v}$	(6 marks)	
	e)	i) Given $\emptyset = 2x^2y^3z$. Find grad \emptyset	(3 marks)	
		ii) Show that $curl(-yi + xj)$ is a constant vector.	(6 marks)	

Examination Irregularity is punishable by expulsion

2. a) Given
$$\mathbf{A} = \mathbf{x}^2 \mathbf{y}^3 \mathbf{i} - 2\mathbf{x}\mathbf{y}\mathbf{z}^2 \mathbf{j} + \mathbf{x}^2 \mathbf{k}$$

 $\mathbf{B} = \mathbf{x}\mathbf{y}^2 \mathbf{z}^1 + 3\mathbf{y}\mathbf{z}^2 \mathbf{j} - \mathbf{x}\mathbf{y}\mathbf{z}^2 \mathbf{k}$ and that $\emptyset = \mathbf{x}\mathbf{y}^2 \mathbf{z}^3 - 3\mathbf{x}\mathbf{y}^2 + \mathbf{x}\mathbf{y}\mathbf{z}^2$
Determine at the point (1,-2,1)
i) $\nabla \emptyset$
ii) $\nabla \cdot \mathbf{A}$
iii) $\nabla \cdot \mathbf{B}$ (10 marks)
b) If $\mathbf{OA} = 2\mathbf{i} + 3\mathbf{j} - \mathbf{k}$ and $\mathbf{OB} = \mathbf{i} - 2\mathbf{j} + 5\mathbf{k}$ determine
i) the value of $\mathbf{OA} \cdot \mathbf{OB}$
ii) the product $\mathbf{OA} \times \mathbf{OB}$ in terms of unit vectors
iii) the cosine of the angle between \mathbf{OA} and \mathbf{OB} (10 marks)
3. a) If $\mathbf{A} = 2\mathbf{i} - 3\mathbf{j} + \mathbf{k}$, $\mathbf{B} = \mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$, and $\mathbf{C} = 3\mathbf{i} + \mathbf{j} + 2\mathbf{k}$, determine
ii) angle between \mathbf{A} and \mathbf{B}
iii) $\mathbf{B} \times \mathbf{C}$
b) If $\mathbf{A} = \mathbf{x}^2\mathbf{y}\mathbf{i} + (\mathbf{x}\mathbf{y}+\mathbf{y}\mathbf{z})\mathbf{j} + \mathbf{x}^2\mathbf{k}$
 $\mathbf{B} = \mathbf{y}\mathbf{z}\mathbf{i} - 3\mathbf{x}\mathbf{z}\mathbf{j} + 2\mathbf{x}\mathbf{y}\mathbf{k}$ and
 $\emptyset = 3\mathbf{x}^2\mathbf{y} + \mathbf{x}\mathbf{y}\mathbf{z} - 4\mathbf{y}^2\mathbf{z}^2 - 3$ determine at the point (1,2,1)
i) grad \emptyset ii) div grad \emptyset iii) grad div \mathbf{A} iv) div curl \mathbf{B} (10 marks)
4. a) Given that $\mathbf{u} = e^{\mathbf{x}}[\sin(\mathbf{y} + \mathbf{z}) - \mathbf{y}\cos(\mathbf{y} + \mathbf{z})]$
Show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} + u = 2e^{\mathbf{x}}\sin(\mathbf{y} + \mathbf{z})$ (10 marks)
b) Find the directional derivatives of the function $\emptyset = \mathbf{x}^2\mathbf{z} + 2\mathbf{x}\mathbf{y}^2 + \mathbf{y}\mathbf{z}^2$ at the point
(1,2,-1) in the direction of the vector $\mathbf{A} = 2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}$ (10 marks)

5) A surface consists of five sections formed by the planes x = 0, x = 1, y = 0, y = 3, Z = 2 in the first octant. If the vector field $\mathbf{F} = y\mathbf{i} + z^2\mathbf{j} + xy\mathbf{k}$ exists over the surface and around its boundary verify Stokes theorem. (20 marks)