

MACHAKOS UNIVERSITY COLLEGE

(A Constituent College of Kenyatta University)
University Examinations for 2015/2016 Academic Year
SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

SECOND SEMESTER EXAMINATION FOR DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING

MATHEMATICS VI

DATE: 1/8/2016
TIME: 2:00-4:00 PM

INSTRUCTIONS:

Answer QUESTION ONE and Any other TWO Questions

1
a) Evaluate
i) $\quad \mathrm{I}=\int_{1}^{2} \int_{2}^{4}(x+2) d x d y$
ii) $\quad \mathrm{I}=\int_{1}^{3} \int_{-1}^{1} \int_{0}^{2}(3 x-y-2 z) d x d y d z$
(4 marks)
(6 marks)
b) Find from first principals the laplace transform of:-
i) 3
ii) $\cos 2 t$
c) Find the inverse Laplace transform of:-
i) $\frac{9 s-8}{s^{2}-2 s}$
(5 marks)
ii) $\frac{2 s^{2}-6 s-1}{(s-3)\left(s^{2}-2 s+5\right)}$

2
a) Evaluate $\mathrm{I}=\int_{1}^{2} \int_{0}^{3} x^{2} y d x d y$
(6 marks)
b) Determine $\mathrm{I}=\int_{1}^{2} \int_{0}^{\pi}(3+\sin \theta) d \theta d r$
c) Find the area enclosed by the curves $y^{2}=9 x$ and $y_{1}=\frac{x^{2}}{9}$
3. a) Evaluate $\mathrm{I}=\int_{1}^{2} \int_{0}^{3} \int_{1}^{3 x} y d y d x d z$ (9 marks)
b) Find the volume of the solid bounded by the planes $\mathrm{z}=0, \mathrm{x}=1, \mathrm{x}=2, \mathrm{y}=-1, \mathrm{y}=$ 1and the surface $\mathrm{z}=\mathrm{x}^{2}+\mathrm{y}^{2}$
4. a) Derive the Laplace transform of the function $\mathrm{F}(\mathrm{t})=e^{2 t} \cos 3 t$ from first principals.
b) Solve the differential equation $\left(D^{2}-3 D+2\right) y=e^{3 t}$ given that when $t=0, y=1$ and $\frac{d y}{d x}=0$.
5. a) Find from first principals the Laplace transform of $e^{2 t}$.
b) Determine the inverse Laplase transform of $\frac{4 s^{2}-5 s+6}{(s+1)\left(s^{2}+4\right)}$
c) Use Laplace transforms to solve the differential equation

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}-3 \frac{d x}{d t}+2 x=2 e^{3 t} \text { given that at } \mathrm{t}=0, \mathrm{x}=5 \text { and } \frac{d x}{d t}=7 \tag{10marks}
\end{equation*}
$$

MACHAKOS UNIVERSITY COLLEGE

(A Constituent College of Kenyatta University)
University Examinations for 2015/2016 Academic Year
SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

SECOND SEMESTER EXAMINATION FOR DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING

MATHEMATICS IV

INSTRUCTIONS:

Answer QUESTION ONE and Any other TWO Questions

1
a) Evaluate
i) $\int\left(x^{6}-1\right) d x$
(2 marks)
ii) $\int 3 e^{4 x} d x$
(3 marks)
b) Determine
i) $\mathrm{I}=\int\left(\frac{1}{t^{2}}+3+2 t\right) d t$
(4 marks)
ii) $\mathrm{I}=\int\left(4 e^{2 x+4}+\frac{3}{4 x}\right) d x$
(4 marks)
c) Evaluate
i) $\mathrm{I}=\int_{1}^{2} \int_{2}^{4}(x+2) d x d y$
(5 marks)
ii) $\quad \mathrm{I}=\int_{1}^{3} \int_{-1}^{1} \int_{0}^{2}(3 x-y-2 z) d x d y d z$
(6 marks)
d) A curve passes through the point $(3,-1)$ and its gradient function is $2 x+5$. Find its equation. (6 marks)
2
a) Evaluate $\quad \mathrm{I}=\int_{1}^{2} \int_{0}^{3} x^{2} y d x d y$ (6 marks)
b) Determine $\mathrm{I}=\int_{1}^{2} \int_{0}^{\pi}(3+\sin \theta) d \theta d r$ (6 marks)
c) Find the area enclosed by the curves $\mathrm{y}^{2}=9 \mathrm{x}$ and $\mathrm{y}_{1}=\frac{x^{2}}{9}$
3. a) Evaluate $\mathrm{I}=\int_{1}^{2} \int_{0}^{3} \int_{1}^{3 x} y d y d x d z$ (9 marks)
b) Find the volume of the solid bounded by the planes $\mathrm{z}=0, \mathrm{x}=1, \mathrm{x}=2, \mathrm{y}=-1, \mathrm{y}=$ 1and the surface $\mathrm{z}=\mathrm{x}^{2}+\mathrm{y}^{2}$
4. a) Evaluate
i) $\left.\int 2 x\left(3 x^{2}+5\right) d x\right)$
ii) $\int x \cos 3 x d x$
iii) $\int \frac{x-8}{x^{2}-x-2} d x$
b) Find the area bounded by $y=\frac{12}{5} x^{2}$, the x - axis and the ordinate at $x=5 .(9 \mathrm{~m})$
5. a) Evaluate the double integral

$$
\begin{equation*}
\int_{0}^{3 / 2} \int_{0}^{\sqrt{9-y^{2}}}\left(x^{2}+y^{2}\right) d x d y \tag{8marks}
\end{equation*}
$$

b) Find the volume V of the solid bounded on top by the surface $z=5-x^{2}-y$, below by the $\mathrm{x}-\mathrm{y}$ plane and the cylinder $\mathrm{x}^{2}+\mathrm{y}^{2}=16$.
(12 marks)

MACHAKOS UNIVERSITY COLLEGE

(A Constituent College of Kenyatta University)
University Examinations for 2015/2016 Academic Year
SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

SECOND SEMESTER EXAMINATION FOR DIPLOMA IN MECHANICAL ENGINEERING

MATHEMATICS III

DATE: 3/8/2016
TIME: 8:30-10:30 am

INSTRUCTIONS:

Answer QUESTION ONE and Any other TWO Questions

QUESTION ONE

a) Given the matrix $M=\left[\begin{array}{ccc}3 & -6 & 2 \\ 6 & 2 & -3 \\ 2 & 3 & 6\end{array}\right]$ find M^{T} and hence state M^{-1} (3 marks)
b) Find the inverse of the matrix

$$
\mathrm{p}=\left[\begin{array}{lll}
4 & 8 & 3 \\
3 & 5 & 2 \\
2 & 4 & 3
\end{array}\right]
$$

c) Use Cramer's rule to solve the simultaneous equation

$$
\begin{array}{r}
2 x+3 y-z=-6 \\
x+y-4 z=-5 \\
5 x+2 y+z=17 \tag{9marks}
\end{array}
$$

QUESTION TWO

a) Evaluate the double integral

$$
\int_{0}^{3 / 2} \int_{0}^{\sqrt{9-y^{2}}}\left(x^{2}+y^{2}\right) d x d y
$$

b) Find the volume V of the solid bounded on top by the surface $z=5-x^{2}-y$, below by the $\mathrm{x}-\mathrm{y}$ plane and the cylinder $\mathrm{x}^{2}+\mathrm{y}^{2}=16$.

QUESTION THREE

a) Solve the differential equation $x y \frac{d y}{d x}=x^{2}+y^{2}$ given that when $x=1 y=0 \quad$ (9 marks)
b) Use the method of undetermined coefficient to solve the differential equation

$$
\begin{equation*}
\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+10 y=\sin 3 x \quad \text { Given that } \mathrm{y}=0 \text { and } \frac{d y}{d t}=1 \text { when } \mathrm{t}=0 \tag{11marks}
\end{equation*}
$$

QUESTION FOUR

a) i) Derive fourier series co efficients for half range sine series with a period T .
(5 marks)
ii) Given $f(x)=\left\{\begin{array}{cc}3 t & 0<t>1 \\ 3 & 1<t>2 \\ f(t+2)\end{array}\right\}$ find the fourieir series

QUESTION FIVE

Given that $f(x)=\left\{\begin{array}{cc}x & 0<x>2 \pi \\ 0 & \text { elswhere } \\ & f(x+2 \pi)\end{array}\right.$
i) Sketch the function between $-4 \pi<x>4 \pi$
ii) Obtain the fourier series of the function

MACHAKOS UNIVERSITY COLLEGE

(A Constituent College of Kenyatta University)
University Examinations for 2015/2016 Academic Year
SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS
SECOND SEMESTER EXAMINATION FOR DIPLOMA IN EDUCATION

SMA 0205: VECTOR ANALYSIS

DATE: SCHOOL BASED
TIME:

INSTRUCTIONS:

Answer QUESTION ONE and Any other TWO Questions

1. a) Define a
i) Scalar product
ii) Vector product
b) Given that $\mathbf{P}=5 \mathbf{i}-2 \mathbf{j}+\mathbf{k}$ and $\mathbf{Q}=2 \mathbf{i}+5 \mathbf{j}-6 \mathbf{k}$ evaluate
i) $\mathbf{P} . \mathbf{Q} \quad$ (3 marks)
ii) $\quad \mathbf{P} \times \mathbf{Q}$
(4 marks)
c) If $\mathbf{A}=(u+3) \mathbf{i}-\left(2 u+u^{2}\right) \mathbf{j}+2 u^{3} \mathbf{k}$ determine
i) $\frac{d A}{d u}$ ii) $\frac{d^{2} A}{d u^{2}}$
(4 marks)
d) If $\mathbf{F}=2 u v \mathbf{i}+\left(v^{2}-5 u\right) \mathbf{j}-\left(2 u+v^{2}\right) \mathbf{k}$ determine

$$
\begin{array}{lll}
\text { i) } \frac{\partial \boldsymbol{F}}{\partial u} & \text { ii) } \frac{\partial^{2} \boldsymbol{F}}{\partial u^{2}} & \text { iii) } \frac{\partial^{2} \boldsymbol{F}}{\partial u \partial v}
\end{array}
$$

(6 marks)
e) i) Given $\emptyset=2 x^{2} y^{3} z$. Find $\operatorname{grad} \emptyset$
ii) Show that curl $(-\mathrm{yi}+\mathrm{x} \mathbf{j})$ is a constant vector.
2. a) Given $\mathbf{A}=x^{2} y^{3} \mathbf{i}-2 x y z^{2} \mathbf{j}+x^{2} z \mathbf{k}$
$\mathbf{B}=x y^{2} \mathbf{z i}+3 y z^{2} \mathbf{j}-x y z^{2} \mathbf{k}$ and that
$\varnothing=x y^{2} z^{3}-3 x y^{2}+x y z^{2}$
Determine at the point $(1,-2,1)$
i) $\nabla \emptyset$
ii) ∇. A
iii) $\nabla \times B$
(10 marks)
b) If $\mathbf{O A}=2 \mathbf{i}+3 \mathbf{j}-\mathbf{k}$ and $\mathbf{O B}=\mathbf{i}-2 \mathbf{j}+5 \mathbf{k}$ determine
i) the value of $\mathbf{O A} . \mathbf{O B}$
ii) the product $\mathbf{O A} \times \mathbf{O B}$ in terms of unit vectors
iii) the cosine of the angle between $\mathbf{O A}$ and $\mathbf{O B}$
3. a) If $\mathbf{A}=2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}, \mathbf{B}=\mathbf{i}+4 \mathbf{j}-2 \mathbf{k}$, and $\mathbf{C}=3 \mathbf{i}+\mathbf{j}+2 \mathbf{k}$, determine
ii) angle between \mathbf{A} and \mathbf{B}
iii) $\mathbf{B} \times \mathbf{C}$
b) If $\mathbf{A}=x^{2} y \mathbf{i}+(x y+y z) \mathbf{j}+x z^{2} \mathbf{k}$
$\mathbf{B}=y z \mathbf{i}-3 x z \mathbf{j}+2 x y \mathbf{k}$ and
$\emptyset=3 x^{2} y+x y z-4 y^{2} z^{2}-3$ determine at the point $(1,2,1)$
i) $\operatorname{grad} \emptyset$ ii) div $\operatorname{grad} \emptyset$ iii) $\operatorname{grad} \operatorname{div} \mathbf{A}$ iv) div curl \mathbf{B}
(10 marks)
4. a) Given that $\mathrm{u}=e^{x}[\sin (y+z)-y \cos (y+z)]$

Show that $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}+u=2 e^{x} \sin (y+z)$
(10 marks)
b) Find the directional derivatives of the function $\emptyset=x^{2} z+2 x y^{2}+y z^{2}$ at the point $(1,2,-1)$ in the direction of the vector $\mathbf{A}=2 \mathbf{i}+3 \mathbf{j}-4 \mathbf{k}$
(10 marks)
5) A surface consists of five sections formed by the planes $\mathrm{x}=0, \mathrm{x}=1, \mathrm{y}=0, \mathrm{y}=3$, $\mathrm{Z}=2$ in the first octant. If the vector field $\mathbf{F}=\mathrm{yi}+\mathrm{z}^{2} \mathbf{j}+\mathrm{xyk}$ exists over the surface and around its boundary verify Stokes theorem.
(20 marks)

