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                                     SMA 430:  NUMERICAL ANALUSIS II 
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INSTRUCTIONS 

Answer question ONE and any other TWO questions 

QUESTION ONE (30 MARKS) 

a) Solve the system of equations below using the inverse of the coefficients matrix method 

                  (5 marks) 
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b) Determine the Eigen values and the corresponding Eigen vectors of the following system. 

                  (5 marks) 
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c) Let  xxf ln)( =    and   8.10 =x    for   0>h  ,evaluate )(xf ′                      (5 marks) 
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d) Compute the approximate value of  
− +

=
1

1
1 x

dx
I  using the Lobatto integration methods 

                  (5 marks) 

e) Consider the initial value problem (I .v. p) given by  

1)0(;32 =+=′ yyxy  

Use Taylors series second order method to get )4.0(y with step size length 1.0=h   

                  (5 marks) 

f) Using Jacobi’s iteration method, solve the system of equations below, perform two 

iterations                  (5 marks)  
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QUESTION TWO (20 MARKS) 

Consider the differential equation 2)0(,2 == yye
dx

dy x  . Calculate y(0.4) using Adams predictor 

corrector formula by calculating )3.0()2.0(,)1.0( yandyy  using the Euler’s modified formula. 

                 (20 marks) 

QUESTION THREE (20 MARKS) 

Consider the approximate value of dxxeI
x cos

1
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−

−=  obtain the value using. 

a) Gauss-Legendre integration method for 3,2=n       

                (10 marks) 

b) Radau integration method for 3,2=n        

                (10 marks) 

QUESTION FOUR (20 MARKS) 

a) Calculate the largest Eigen –value for the matrix 
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Also evaluate the Eigen vector corresponding to the Largest Eigen -value   

                (10 marks) 
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b) Consider the system of equations  
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Where a is a real constant 

 

i) Determine the values of a , for which the Jacobi and Gauss-Seidel methods 

converge.          

                 (7 marks) 

ii) For 5.0=a calculate the value of ω which minimizes the spectral radius of the 

SOR iteration method.        

                 (3 marks) 

QUESTION FIVE (20 MARKS) 

a) Solve the system of equations below using Doolittle’s method.    

                  (8 marks) 
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b) Solve the system of equations 
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Using the Gauss- Elimination method with partial pivoting           (7 marks) 

 

c) Calculate 
2

1

0
sin

dx
x

x
  using Romberg integration with step size 

16

1=h          (5 marks) 

 

 

 

 


