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Instructions to the Candidate: 

1. Answer Question 1 and any other two questions. 

2. Out of the three questions answered, each question must start on a new page. 

3. You must have the following items for this paper: 

• Statistical tables; 

• Scientific calculator. 

 

1. (a) Outline three characteristics of the binomial probability distribution, illustrating with an example 

from a real life situation for each characteristic. (3 marks) 

 

(b) (i) Given a continuous random variable x, state two conditions that must be satisfied for the 

function ���� to be considered a probability density function (p.d.f.).  (2 marks) 

 (ii) If  x  is a continuous random variable with a probability density function given by: 

 

���  ; for   1  	   � 	  2 

 

0   ;   otherwise  

����  � 
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Determine the value of the constant  a. (3 marks) 

 

 (c) If  x  is a discrete random variable with a probability mass function ����  given by: 

 
�

     ; for   �  =  1, 2, 3 

 

0   ;   otherwise  

 

Determine the moment generating function of �, and hence determine the mean and variance of �. 

 (6 marks) 

 

(d) The height of 3000 students in a certain university has been found to be normally distributed with 

mean 68 inches and standard deviation 12 inches. Determine the following about the distribution: 

(i) The probability that a student selected at random has a height of between 60 and 70 inches; 

  (4 marks) 

(ii) The number of students whose height is between 60 and 70 inches. (1 mark) 

 

(e) Given a continuous random variable x, and taking its variance, prove that: 

 

 ���� − ��2�   =   ���2� − �2  (3 marks) 

 

(f) A discrete random variable x has a Poisson probability distribution with probability mass function 

(p.m.f.) given by: 

 

����  �   
�� ���

�!   for   �  =  1, 2, 3, …. , ∞ ,      and  � >  0. 

 

Show that for the random variable x:  �   =   ������  =   �  (8 marks) 

 

2. A continuous random variable x is given by the probability function 

 
 

!
 �8� − �� − 7�  ;  for   1  	   � 	  7 

 

0   ;   elsewhere  

 

(a) Show that the function ����  is a probability density function (p.d.f.).  (3 marks) 

 

(b) Determine by calculation the following measures about the random variable x in the probability 

distribution: 

(i) the mode of x ; 

(ii) the mean of x ; 

(iii) the variance of x .  (10 marks) 

 

(c) Determine the cumulative distribution function of x.  Hence, determine the following: 

(i)  the median of x. 

(ii) the probability: $�� 	  5� . (7 marks) 

����  � 

����  � 
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3. (a) A random variable x has a binomial probability distribution. Derive the expectation and the variance 

of the random variable x (without using the moment generating function technique). (10 marks) 

 

(b) Research findings on loaves of bread produced in Machakos shows that 40% of the loaves actually 

expire before the indicated expiry date. A random sample of 12 loaves was taken.  Determine the 

probability that among these loaves, the following will expire before the indicated expiry date: 

(i) exactly 6 loaves; 

(ii) at least 3 loaves; 

(iii) between 4 and 6 loaves inclusive. (10 marks) 

4. (a) A continuous random variable x has an exponential probability distribution with probability density 

function (p.d.f.) given by: 

 

� &'��
  ;  for    0  	   � 	  ∞ ,  � >  0. 

 

0    elsewhere  

 

Prove that the variance of x is given by:   ������  �    
 

�(  (10 marks) 

 

(b) It has been observed that 4 out of every 100 nails coming out of a manufacturing process are 

defective.  A random sample of 240 nails is selected from the manufacturing process.   

(i) Derive the probability mass function (p.m.f.) for this distribution;  (2 marks) 

(ii) Determine the probability that among the nails selected, the following will be defective: 

I. at least 3 nails; 

II. between 6 and 8 nails inclusive.  (8 marks) 

 

5. The marks scored in Mathematics by students who sat for the KCSE examination in the year 2015 is 

normally distributed with a mean of 52 marks and a standard deviation of 12 marks. 

 

(a) (i) Suppose the pass-mark is set at 42 marks, determine the proportion of the students who will 

pass. (3 marks) 

(ii) Determine the proportion of the students who will score a Grade C if the grade is assigned for 

marks between 56 and 64.  (7 marks) 

 

(b) (i) If the top 68% of the students are supposed to pass this examination, determine the mark 

which should be set as the pass-mark to achieve this.  (3 marks) 

(ii) Grades for results are awarded as follows: 

• Fail to the bottom 20%,  

• Pass to the next 40%,  

• Credit to the next 25%,  

• Distinction to the top 15%.   

 

Determine the lower and upper limits of the range of the marks for the grades Pass and 

Credit.  (7 marks) 

����   �
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Statistical Formulae 

 

µ   =  E(X) =     

 =  

Var(x) = E(X2)  –  [E(X)]2   =  

 =  

Binomial probability mass function f (x)  =   xnx
pp

x

n −−



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
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Mean  = E[X]   =  n p and  var (x) =  n p (1 - p)  =   n p q 

 

Poisson probability mass function   f (x)   =   
�� ���

�!       Mean  =  n p  =   and    var (x) =   

 

Exponential probability density function   f (x)   =   � &'��
      Mean  =  

 
�      and    var (x)   =   

 
�( 

 

Normal probability density function  ����  �      
√�*+( &' ,(-� � .

/ 0
(

     

 for −∞ ≤  x  ≤  ∞ , −∞ ≤ µ  ≤ ∞,    0 ≤  1  ≤  ∞ 

The standardised value z for a normal random variable x:  2 �   
� ' 3

+      

Standard normal probability density function     ��2�  �     
 

√�* &' ,( 4(
    for −∞ ≤  z  ≤  ∞ ,   

where  mean  µ   =  0 and    standard deviation   σ   =  1 
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