MACHAKOS UNIVERSITY SCHOOL OF ENGINEERING AND TECHNOLOGY DEPARTMENT: CIT UNIT NAME: AUTOMATA THEORY UNIT CODE: SCO 211 SEMESTER:

DATE:

TIME: 2 HOURS

INSTRUCTIONS: Answer Question ONE and Any Other TWO Questions.

QUESTION ONE [30 MARKS]

Write a regular expression for the following languages: a) The set of all the strings such that the number of 0's is odd. i. [3 marks] ii. The set of all the strings that do not contain 1101 [3 marks] Differentiate between finite automata and push down automata. [3 marks] b) (i) Construct finite state automata that recognizes all possible strings over the alphabet $\{0,1\}$ c) ending with two consecutive zeros. [6 marks] (ii) Differentiate between deterministic and non deterministic finite automata. [6 marks] d) Construct corresponding context free grammar for the given language over sigma= {a, b}: "All words of even length but not multiple of 3". [4 marks] Design Turing machine to generate the language given by a regular expression 00* e) [5 marks]

QUESTION TWO [20 MARKS]

- (a) List the four components used to form a context free grammar. [4 marks]
- (b) Construct a deterministic finite state automata DFA, equivalent to the non deterministic finite state automata given below.

M= ({ a_0, a_1, a_2, a_3 }, ∂ , a_0 , { a_3 }), where ∂ is defined in the following transition table.

∂	0	1
a_0	$\{a_{0}, a_{1}\}$	$\{a_0\}$
a_1	$\{a_2\}$	$\{a_1\}$
a ₂	$\{a_3\}$	$\{a_3\}$
a ₃	Φ	$\{a_2\}$

[6 marks]

[6 marks]

- (c) Express each of the following sets using a regular expression
 - i) The set of strings of one or more 0s followed by a 1
 - ii) The set of all strings of 0s and 1s ending in 00
 - iii) The set of all strings of 0's and 1's
- (d) Explain Chomsky hierarchy

[4 marks]

QUESTION THREE [20 MARKS]

- (a) Construct a Turing Machine (TM) for accepting palindromes.
- (b) What are the main differences between GFL and regular expression? [5 marks]
- (c) Construct the regular expression from the given deterministic finite automata below. [5 marks]

(d) Draw notation for Turing machine.

QUESTION FOUR [20 MARKS]

(a)	Give the closure properties of regular languages	[6 marks]
(b)	Outline the limitations of Finite State Machines	[4 marks]

- (c) Build an automaton that accepts all and only those strings that contain 100 over an alphabet $\{0,1\}.$ [7 marks]
- Define context free grammar [3 marks] (d)

QUESTION FIVE [20 MARKS]

(a)	Let $L_1 = \{x^2, xy^3, x^2\}$ and $L_2 = \{y^2, xyz^2\}$	be a language of $\sum = \{x, y\}$. Find:	
	i. L_1L_2		[3 marks]
	ii. L_2^2		[3 marks]

Using pumping lemma prove that the following languages is not regular $L=|ww|w\in\{0,1\}^*$ (b) [5 marks]

Let $\sum = \{0,1\}$, Construct Deterministic finite state automata that recognizes set of all possible (c) Strings of length greater than or equal to two. [5 marks] Define a DFA for the regular expression (a+b)*aba [4 marks] (d)

[3 marks]

[7 marks]