

MACHAKOS UNIVERSITY COLLEGE

(A Constituent College of Kenyatta University) University Examinations for 2015/2016 Academic Year

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

SECOND SEMESTER EXAMINATION FOR DEGREE IN BACHELOR OF STATISTICS AND PROGRAMMING

SMA 401: TOPOLOGY II

Date: 4/8/2016

Time:

INSTRUCTIONS:

Answer Question One and Any Other Two Questions

QUESTION ONE (30 MARKS)

a)	Let A be a subset of a topological space X. Define the following terms:		
	i. An open cover for a set A.	(1 mark)	
	ii. Finite subcover of a set A.	(1 mark)	
	iii. A compact set A in X.	(2 marks)	
b)	State the Heine-Borel theorem.	(2 marks)	
c)	v in details that the open interval $A = (0,1)$ on \Re with the usual topology is not		
	compact.	(4 marks)	
d)	When is a class $\{A_i\}$ of subsets of a topological space X said to have the finite		
	intersection property? Give an example of a class that has the finite intersection property.		
		(5 marks)	
e)	Let f be a one to one continuous function from a compact space X into a Hausdorff		
	space Y. Prove that X and $f(x)$ are homeomorphic.	(5 marks)	
f)	Let A be a subset of a topological space X. Define the following termino	e a subset of a topological space X. Define the following terminologies:	
	i. Sequentially compact set A in X.	(1 mark)	
	ii. Countably compact set A in X.	(1 mark)	
	iii. Locally compact set X.	(1 marks)	
g)	Show that a locally compact space need not be compact but that every compact space is		
	locally compact.	(3 marks)	

h) Distinguish between a connected space and a space that can be separated. Hence give an example of a connected topological space. (4 marks)

QUESTION TWO (20 MARKS)

- a) Prove that a continuous image of a compact set is also compact. (8 marks)
- b) Let A be a subset of a topological space (X, τ) . Prove that A is compact with respect to τ if and only if A is compact with respect to the relative topology τ_A on A. (12 marks)

QUESTION THREE (20 MARKS)

- a) Show that if A is a connected subspace of a topological space X and $A \subset B \subset \overline{A}$, then B is also connected. (8 marks)
- b) Let X be a topological space. Prove that the following statements are equivalent.
 - X is compact.
 - For every collection $\{F_i\}$ of closed subsets of X, $\bigcap_{i=1}^{\infty} F_i$ implies that $\{F_i\}$ contains a finite subcollection $\{F_{i_1}, F_{i_2}, F_{i_3}, \dots, F_{i_m},\}$ with $F_{i_1} \cap F_{i_2} \cap F_{i_3} \cap \dots \cap F_{i_m}$. (12 marks)

QUESTION FOUR (20 MARKS)

- a) Let X be a topological space. Define what is meant by a set E is a component of X.
- b) Consider the following topology on $X = \{a, b, c, d, e\}$. $\tau = \{X, \Phi, \{a\}, \{d, e\}, \{a, c, d\}, \{b, c, d, e\}\}$. Find all the components of X. (6 marks)
- c) Show that the subset $A = \{(x, y) : x^2 y^2 \le 4\}$ of \Re is disconnected. (6 marks)
- d) Show that every discrete space X is locally connected. (6 marks)

QUESTION FIVE (20 MARKS)

- a) Let A = (0,1), B = (1,2) and C = [2,3) be intervals on \Re . Show that A and B are separated but B and C are not. (5 marks)
- b) Consider the following topology on $X = \{a, b, c, d, e\}$. $\tau = \{X, \Phi, \{a, b, c\}, \{c, d, e\}, \{c\}\}$. Show that $A = \{a, d, e\}$ is disconnected. (3 marks)
- c) Show that if A and B are non-empty separated sets, then $A \cup B$ is disconnected.

(4 marks)

(2 marks)

d) Let A be a non-empty set. If $G \cup H$ is a disconnection of A, show that $A \cap G$ and $A \cap H$ are separated. (8 marks)