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MACHAKOS UNIVERSITY COLLEGE

(A Constituent College of Kenyatta University)
University Examinations for 2015/2016 Academic Year

SCHOOL OF PURE AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS AND STATISTICS

FIRST SEMESTER EXAMINATION FOR DEGREE IN BACHELOR OF EDUCATION
SCIENCE

SMA 407: MEASURE THEORY

DATE: 8/8/2016 TIME: 2:00 — 4:00 PM

INSTRUCTIONS:
Answer Question One and Any Other Two Questions

SECTION A: (COMPULSORY)

QUESTION ONE 30 MARKS
a) Define a measure? (3 marks)
b) Prove that if u is a measure defined on a 0 —algebra X. Then u is monotonic, that is if
ECF, then u(E) < u(F). Furthermore if u(E) < oo, then u(F — E) = u(F) — u(E).
. (5 marks)
) Prove that u*({x}) = 0 for all x € R (4 marks)
d) Show that if u*(E) = 0, then E is L-measurable. (5 marks)
e) Prove that the space (R, M, u), where u is the lebesque measure is complete. (5 marks)
f) Prove that if f, g: = R are two X —measurable functions and c be a real number then the
function cf is X —measurable (5 marks)
2) Prove that if ¢ and p are simple functions in M* (X, X) and ¢ = 0, then
[ copdu = ¢ [ pdu (3 marks)
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QUESTION TWO 20 MARKS

a)

b)

Prove that if f, g: —> R are two X —measurable functions and c be a real number then the

function
i) f?

ii) |f| are ¥ —measurable.

(5 marks)

Let (f,) be a sequence of X —measurable functions f,,: X — R, then the functions
fiUfoUf30 e Uf, and fiNnfoNfsN.. ... .. N f, is X —measurable.

QUESTION THREE 20 MARKS

a) State and prove monotone convergence theorem.
b) Let (X, X) be a measurable space. Then if f,g € M* (X, X), then
) f+geM (X%
ii) [cfdu=c | fdu
QUESTION FOUR 20 MARKS
a) Prove that if f and g both belong to M* and f < g, then [ fdu < [ gdu
b) Prove that if f € M* and if E, F € ¥, with ECF then [, fdu < [, fdu
C) State and prove Fatous lemma.
QUESTION FIVE 20 MARKS
a) Define o —algebra
b) Prove that if ACB then u*(4) < u*(B), A,B €R
c) Prove that pu*(@) =0
d) Prove that lebesque outer measure y* is countably sub additive.

(5 marks)

(10 marks)

(6 marks)
(4 marks)

(6 marks)

(7 marks)
(7 marks)

(5 marks)
(5 marks)
(3 marks)
(7 marks)
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