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Abstract 

The general goal of data statistical analysis is to find a near perfect translation to reality such that 

minimal information is lost in the approximating model. In this paper change point problem is 

viewed as a model selection problem where the point in time that model parameters change is 

estimated. This paper develops a change point estimator of the shape parameter of the 

generalized Pareto distribution which is shown to be consistent through simulations. The 

likelihood ratio test statistic based on the Kullback-Leibler divergence is used to detect a change 

point under the assumption that the model is correctly specified. The maximum likelihood 

estimation method is used to estimate the change point. The estimator is then used to detect a 

change point within extreme events with a climatic application in mind. 
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INTRODUCTION 

Time series data can be viewed as data that is recorded sequentially with reference to time. An 

entire data array can initially be analysed with the goal of finding a statistical model that can 

adequately describe the underlying data generating process through the estimation of model 

parameters. Since reality cannot be fully exhibited through a model, we seek to minimize 

information loss through an approximating model that gives a near perfect translation to reality. 

In the study of time series, it is natural to assume time-shift invariance of the data probability 

distribution i.e. stationarity. However, some properties of time series data such as mean, variance 

or higher order moments may change with time. The basic assumption would be that estimated 

model parameters remain unchanged throughout time. Truong et al. (2018) states that may real 

world data are made up of consecutive regimes that are separated by abrupt changes. Prior to 

model estimation, the statistical hypothesis of stochastic homogeneity of the data can be checked 

for the purpose of parameter estimation in each segment of the data separately if any changes are 

detected. In its simplest form, change-point detection is the name given to the problem of 

estimating the point at which the statistical properties of a sequence of observations change 

(Killick & Eckley, 2014). The overall behaviour of observations can change over time due to 

internal systemic changes in distribution dynamics or due to external factors. Change-point 

analysis entails finding both the number and the location of such changes. The detection of 

change points has been increasingly taken into consideration as opposed to the classical 

stationary assumptions as change points can drastically alter inferences made from a time series. 

Fundamental features in an extreme value analysis are captured by the tail behaviour. When the 

overall distribution changes, what happens to the mean may be different from what happens to 



MACHAKOS UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, ISSN2707-6741 VOL. 2, ISSUE 3, 
JUNE 2021 

 
 

the extremes at either ends of the distribution (Field et al., 2012). This guides the study to the 

changes in the tail behaviour of any given distribution which is characterized by the extreme 

values. Extreme values on the other hand can be summarized by the existing extreme value 

distributions. This means that by imposing a fixed parametric density form, then any changes in 

distribution parameters can be monitored. Changes observed in extremes could be linked to 

changes in the mean, variance or shape of the probability distribution or all of the three. 

Rationale: Review of previous research works 

EVT focuses on the tail distribution of time series data and provides flexible, simple parametric 

models for capturing tail related behaviors. By the use of asymptotic limit theorems, models that 

can be used to make inferences about the tails of a given underlying distribution are derived. 

Extreme values have been defined in two ways: block maxima whose limiting distribution is the 

generalized extreme value distribution and threshold exceedances whose limiting distribution is 

the generalized Pareto. 

In the study of time series, it is natural to assume time-shift invariance of the data probability 

distribution i.e. stationarity. The standard EVT methods assume stationarity (Coles et al., 2001). 

In contrast, non-stationary processes are characterized by changes through time. In certain 

aspects such as environmental processes and climatology, the characteristics of the underlying 

process is often non-stationary and depends on changes in large-scale processes, seasonality or 

long-term trends (Rust et al., 2009; Cheng et al., 2014; De Paola et al., 2018). The presence of 

temporal dependence challenges the utility of standard EVT models. This implies that model 

parameters cease to be constants rather become functions of time, covariates or other underlying 

processes. 

In its simplest form, change-point detection is the name given to the problem of estimating the 

point at which the statistical properties of a sequence of observations change (Killick & Eckley, 

2014). Change-point analysis entails finding both the number and the location of such changes. 

The detection of change points has been increasingly taken into consideration as opposed to the 

classical stationary assumptions as change points can drastically alter inferences made from a 

time series. Generally, it is of interest to segment a time series into homogeneous segments for 

better informed inferences. 

Jarušková and Rencová (2008) investigate change points in temperature extremes based on the 

assumption that the maxima and minima follow the generalized extreme value distribution. In 

order to decide whether a series is stationary then the principles of mathematical statistics lead to 

hypothesis testing. The null hypothesis corresponds to stationarity of the series whereas the 

alternative corresponds to the type of change that is being sought. Their test statistic based on the 

likelihood ratio considered a change in all the three parameters of the GEV but was modified to a 

trimmed maximum type to ensure that a change cannot occur at the beginning or end points of a 

time series. Since they required to compute the maximum likelihood estimates before and after 

all possible change points, asymptotic theory was used and the authors recommend that good 

parameter estimates are calculated from a sample size of at least fifty observations. They indicate 

that in practice it is better to choose an alternative hypothesis that corresponds better to the type 

of the change expected to occur. Practically, it may be difficult to clearly articulate the expected 

change as it is usually unknown. 
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According to Dierckx and Teugels (2010) extreme values of a distribution might be of greater 

importance than the mean values when performing change point analysis as the mean and 

variance do not often adequately describe the tail of a distribution. Their study is based on the 

likelihood approach of Csörgö and Horváth (1997) which can be adapted to extreme values. 

Through simulations, their study revealed that the test was more powerful for large sample sizes 

and when the position of the change point is not close to the sample end points. Changes in the 

tail distribution and variance can lead to more extreme events as compared to changes in only in 

the mean (Dupuis et al., 2015). Their work focused on changes in the tail behaviour based on 

multiple cross-sectional time series where they sought multi-year seasonal change points. 

The distribution of the likelihood ratio statistic cannot be obtained in analytic form for small 

sample sizes and the ML estimates of the change point does not satisfy regularity conditions 

required to apply standard asymptotic likelihood ratio theory (Chen et al., 2017) . Instead they 

used a Bayesian approach to compare the models of no change point versus change point models 

that considered a change in both the scale and tail index parameters of the GPD. When assessing 

the accuracy of change point detection as well as model selection, the proposed models exhibited 

lower accuracy as when compared to cases where the main interest was change point detection 

regardless of the model selected. Since this points out to the possibility of a change point to be 

adequately detected regardless of an incorrectly chosen model, then model selection uncertainty 

becomes important. 

Detection of change points is critical to statistical inference as a near perfect translation to reality 

is sought through model selection and parameter estimation. Stationarity in the strict sense, 

implies time-invariance of the distribution underlying the process. Stationarity is arguably a very 

strong assumption in many real-world applications as process characteristics evolve over time. 

Opposed to the assumption of stationarity, standard extreme value distributions have been 

modified to account for non-stationarity but this does not always imply that abrupt changes 

within the underlying process will be accounted for. Change points within a parametric setting 

can be attributed to change in the parameters of the underlying data distribution. Thus the main 

problem would be to find the point in time that the changes occur. 

In section 3, the test statistic is constructed based on the Kullback-Leibler divergence introduced 

by Kullback and Leibler (1951) that will test whether the shape and/or scale parameters of the 

generalized Pareto distribution change over time. Simulation studies are carried out in section 4 

with application of the change point estimator to real life data having a climatology context. 

METHODOLOGY 

The generalized Pareto distribution was introduced by Pickands III et al. (1975) to model 

exceedances over thresholds and is widely used in the analysis of extreme events, modelling of 

large insurance claims, hydrology, climatology and as a failure time distribution. The GPD can 

also be used in any situation in which the exponential distribution might be used but in which 

some robustness is required against heavier tailed or lighter tailed alternatives (Hosking & 

Wallis, 1987). 

Definition 3.1. The Generalized Pareto distribution function is defined by; 
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The parameter ξ is the extreme value index and its sign is the dominant factor in describing the 

tail of the underlying distribution. The larger the   the heavier the tail.   is referred to as the 

scale parameter and characterizes the spread of the distribution. 

The GP distribution contains a number of specific distributions under its parametrization. When 

      the corresponding distribution is the usual heavy tailed Pareto distribution. If       the 

corresponding distribution is a type II Pareto distribution whereas       yields the exponential 

distribution. 

Single change point estimation 

Consider a non-stationary process X = *         +   A change point is said to occur when there 

exists a time    *           + such that the statistical properties of *         +    and 

*           +    are different. Then the hypothesis of no change in model parameter(s) versus 

change in model parameter(s) at an unknown time   would be stated as: 

 
                            
                               

(3) 

At a given level of significance, if the null hypothesis is rejected, then the process X is said to be 

locally piecewise-stationary and can be approximated by a sequence of stationary processes that 

may share certain features such as the general functional form of the distribution F. Assuming 

that the time of change   is unknown and there are K (1 < K < n) admissible change points, then 

the test statistic                         Then the estimated time of change   would be 

the value of k that maximizes the test statistic     This would naturally mean that the null 

hypothesis is rejected if     is large. 

The hypothesis being tested is as in equation 4 

 
      ∼    (   ) 
Against 

     ∼   (     )     
(4) 
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Where       and       are unknown before and after the change point    

Information measures provide descriptions of the long term behavior of random processes 

(Garrido, 2009). For this reason, measures of distance between probability distributions are 

central to the problems of inference and discrimination. Statistical inference starts with a set of 

observations *         +  which are assumed to have been generated by an unknown model, say 

 ( )  By means of estimation methods an approximated model, say  ( )  is obtained. The 

overall aim would be to have  ( ) as similar as possible to   ( )  Then probabilistic distances 

(divergences) would be computed to assess how ’close’ the two probability distributions are 

from one another. 

Definition: Let P and Q be two finite distributions on X with probability density functions  ( ) 
and  ( ) respectively. The Kullback-Leibler divergence of   relative to , a measure of 

information lost when  ( ) is used to approximate  ( ) is defined by (Kullback & Leibler, 

1951) 
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where     denotes the expectation operator over the distribution        represents the random 

vector with density   and  . Despite not being a true distance, this expectation provides relevant 

information on how close   is from  . Kullback and Leibler (1951) coined the term "directed 

divergence" to distinguish it from the divergence defined by 6 which is a symmetric measure as 

opposed to 5 which is asymmetric and fails to satisfy the triangular inequality since  (    )  
  (    ) . 

  (    )     (    )   (    ) (6) 

The KL information is applicable for both continuous and discrete distributions. It is also known 

as relative entropy, informational divergence, or information for discrimination. Being a one 

dimensional measure, it is easy to comprehend and thus forms a deep theoretical basis for data-

based model selection as it takes into account the entire range of the distribution. 

Consider two GP densities   ( ) and   ( ) with density function as in 2 with scale and shape 

parameters       and       respectively. The KLD can be expressed as a function of the two 

distribution 
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Equation 9 gives one of the properties of the GP distribution (Embrechts et al., 2013) 
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An application of property 9, numerical computations and methods of integration equation 7 can 

be reduced to 
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The KL divergence as in 10 is a function of the parameters of the two densities f1(x) and f2(x). 

The maximum likelihood estimation method is adapted to estimate the parameters as they have 

desirable characteristics such as consistency, efficiency and asymptotic normality. 

Suppose that *                   +  follow a GP distribution with parameters    (     )     
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Then the log-likelihood functions are as in equation 11 for the likelihood estimators  (  
    

 ) 
and (  

    
 )  for the data sets             and             respectively. The log-likelihood 

functions are maximized with respect to the parameters to obtain the estimates before and after 

the change point τ. 
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Although asymptotically efficient, the MLEs are computationally difficult and can have 

convergence problems (Hosking & Wallis, 1987). The ML estimates sometimes cannot be 

obtained for the generalized Pareto distribution as a result of nonexistence of a local maximum 

of the likelihood function. For instance, the ML estimates do not exist for       because the 

likelihood function has no local maximum. For          , the ML estimates do not exist 

asymptotically since    ( )    (Zhang, 2007). For        , the maximum regularity 

conditions are achieved and thus the maximum likelihood estimates are asymptotically normally 

distributed, consistent and asymptotically efficient.  

RESULTS  

Consider a simulation from the GP density with parameters (1, 0.1) and (3, 0.2) for the scale and 

shape respectively with n = 500 and τ = 250. The first 250 data come from the GP (1, 0.1) and 

the next 250 come from the GP (3, 0.2). These values are taken to represent excesses from two 

different densities with varying parameters. Setting the shape parameter at          then     
varies across the values 0.2, 0.3 and 0.4. The change point as estimated by equation 6 is given at 

the time when the maximum value of the divergence is observed. 

Some of the simulation results are shown in figure 2. For the simulation studies the values of   

  .
 

 
 
 

 
 
  

 
/ 

are varied corresponding considering different locations of the change point for different sample 

sizes (200, 500, 1000). The divergence between the two samples is estimated and the detected 

change point results presented in table 1. 

 

                          

n 
τ  ̂  ̂  ̂ 

500 150     167      162      142 

 250     234      237      239 

 350     369      356      353 

1000 250     171      174      180 
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 500     428      424      431 

 750     720      724      728 

2000 500     310      303      300 

 1000         821          795          

786 

                      Table 1: Estimation by simulation with 500 replications 

                       

n      

500 

 

150 3125.85 3146.48 3182.77 

 250 8324.46 8130.28 7672.63 

1000 250 50275.75 30837.72 30312.39 

 500 50963.03 42619.13 41780.05 

2000 500 171739.4 177772.9 179237.1 

 1000 176082.5 195395.4 200240.9 

                  Table 2: Mean squared errors (MSE) 

Table 2 gives the mean squared errors used to assess the performance of the estimator 

considering three generalized Pareto distributions with different sample sizes. Regardless of the 

location of the change point, the overall performance of the estimator improves as the change in 

the shape parameter becomes larger for smaller samples. This can be seen from the trend in the 

values of the mean squared errors. As the sample size gets larger the estimator’s sensitivity to 

small changes in the shape parameter improves. This implies that very large sample sizes are 

required to detect very small changes in non-negative shape parameters. 

 

    Figure 1: n = 500,        ̂                          Figure 2: n = 1000,        ̂      
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Application to data 

Before fitting the GP density function to data, it is first necessary to choose a threshold. It is 

important to choose a sufficiently high threshold in order that the theoretical justification applies 

thereby reducing bias. However, the higher the threshold, the fewer available data remain. Thus, 

it is important to choose the threshold low enough in order to reduce the variance of the 

estimates. The Fort Collins precipitation data as shown in figure 3 is used. The data contains 

daily precipitation amount records over the period 1900 to 1999. A threshold value of 0.4 is 

selected and extremes classified as the values above this. It is assumed that the values are 

independently and identically distributed. The exceedances are considered to follow the 

generalized Pareto distribution. The KLD values are computed and shown in figure 4 

The change point estimator detects a change at point   ̂= 979 (March, 14 1996).  On July 28, 

1997, an extreme flood disaster hit Fort Collins, Colorado with the heaviest rains ever 

documented in an urbanized area of the state. It was one of the major urban floods of recent 

years in the United States and was labelled a "500- year event" by the media, causing major 

impacts on the city and its people (Grigg et al., 1999). The change point could thus be accounted 

for by this extreme flooding event.  Figure 5 shows the extreme precipitation 

 

              Figure 3: Fort Collins precipitation time series 
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 Figure 4: Kullback- Leibler divergence                       Figure 5: Excesses change 

point estimate 

data with a superimposed line (red) indicating the point in time when the change point was 

detected. Looking at the values of the estimated parameters of the GP before and after the change 

point an increase in the scale parameter is accompanied by a decrease in the shape. 

DISCUSSION AND CONCLUSION 

The Kullback-Leibler divergence has been used to distinguish between two distributions 

belonging to the same family. A change point is then defined as the point in time where the 

distribution parameters change characterized by maximum divergence. This change can be 

attributed to many factors including internal and systemic changes. Since fundamental features 

of extreme values can be captured by the tail behavior described by the generalized Pareto 

distribution, then the method can be used explicitly to examine the parameter changes. The 

method has shown difficulties that are present when estimating small changes in the shape 

parameter given small sample sizes. This then implies that very large samples are crucial in 

estimating small changes since the performance and sensitivity of the estimator improves with 

larger samples. Hence, the estimator is seen to be consistent with respect to the magnitude of 

change. The method is tested within a simulation setting as well as real life example and works 

quite well. 
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