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Abstract 

In this article, we present results on nonparametric regression for estimating unknown finite 

population totals in a model based framework. Consistent robust estimators of finite population 

totals are derived using the procedure of local polynomial regression and their robustness 

properties studied (see Kikechi et al (2017), Kikechi et al (2018) and Kikechi and Simwa 

(2018)). Results of the bias show that the Local Polynomial estimators dominate the Horvitz-

Thompson estimator for the linear, quadratic, bump and jump populations. Further, the biases 

under the model based Local Polynomial approach are much lower than those under the design 

based Horvitz-Thompson approach in different populations. The MSE results show that the 

Local Linear Regression estimators are performing better than the Horvitz-Thompson and 

Dorfman estimators, irrespective of the model specification or misspecification. Results further 

indicate that the confidence intervals generated by the model based Local Polynomial procedure 

are much tighter than those generated by the design based Horvitz-Thompson method, regardless 

of whether the model is specified or misspecified. It has been observed that the model based 

approach outperforms the design based approach at 95% coverage rate. In terms of their 

efficiency, and in comparison with other estimators that exist in the literature, it is observed that 

the Local Polynomial Regression estimators are robust and are the most efficient estimators. 

Generally, the Local Polynomial Regression estimators are not only superior to the popular 

Kernel Regression estimators, but they are also the best among all linear smoothers including 

those produced by orthogonal series and spline methods. The estimators adapt well to bias 

problems at boundaries and in regions of high curvature and they do not require smoothness and 

regularity conditions required by other methods such as the boundary Kernels. 

Keywords: Finite population, Local polynomial regression, Model based framework, 

Nonparametric regression, Robust estimators, Survey sampling.  
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INTRODUCTION 

   The idea of nonparametric regression is introduced by Nadaraya (1964) and Watson (1964). 

Several types of nonparametric regression methods such as the kernels, penalized splines and 

orthogonal series are in existence (see Dorfman (1992), Hardle (1989) and Zeng & Little 

(2003)). In many estimation problems, the sample is used to describe and analyze the target 

population from which it was selected by estimating population parameters and other descriptive 

and analytic inferences such as correlations. Some common parameters of interest for the finite 

population   (          )  are the finite population total, the finite population mean, the 

finite population variance and the finite population proportion respectively given by, 
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Inferences may explore properties of the process that generate the population values (see 

Bolfarine and Zacks (1991)). We assume that the finite population has been generated by a super 

population model    (     ) and we are interested in estimating the population parameters 

 , where        . The super population model can be applied to predict the unobserved 

values      after obtaining estimates of   and   using the known auxiliary information   , 

        (see Montanari & Ranalli (2005) and Sanchez Borrego (2009)). Using the model ξ, 

the nonparametric estimator of totals,   has been derived by Dorfman (1992) who has been able 

to prove the asymptotic unbiasedness and MSE consistency of this estimator. The estimator, 

however suffers from sparse sample problem, and more work needs to be done to come up with 

another technique that can overcome this problem. This is where the local polynomial procedure 

comes in (see Kikechi et al (2017), Kikechi et al (2018) and Kikechi and Simwa (2018)).  

    This study therefore considers a model based approach to robust finite population total 

estimation using the procedure local polynomial regression. It is typically of interest to estimate 

 ( ), using Taylor’s expansion of the form:  
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Then the estimate of  ( ) at any value of   is obtained by the minimization problem, 
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with respect to           , where   denotes the vector of coefficients   (          )
 
. 

The result is therefore a weighted least squares estimator with weights   (    ).  

    Using the notations, 
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we can compute  ̅ which minimizes ( ) by usual formula for a weighted least squares estimator, 

 ̅( )
 (    )                                                                                                                                                ( ) 

Then, the local polynomial estimator of the regression function  ( ) is, 

 ̅( )   ̅ ( )
   

 (    )                                                                                                                         ( ) 

where    is the     vector having   in the first entry and   elsewhere. 

    The weighted least squares principle to be explored in the local polynomial approximation 

procedure, opens a wealth of statistical knowledge and thus providing easy computations and 

generalizations (see Fan and Gijbels (1996)). The local polynomial regression is one of the most 

successfully applied design adaptive non parametric regression. This estimation procedure is an 

attractive choice due to its flexibility and asymptotic performance. Because of its simplicity, it 

can be tailored to work for many different distributional assumptions. It does not require 

smoothness and regularity conditions required by other methods such as boundary kernels. The 

procedure has also the advantage of adapting well to bias problems at boundaries and in regions 

of high curvature. Furthermore, it is easy to understand and interpret. The estimate is also linear 

in the response, provided the fitting criterion is least squares and model selection does not 

depend on the response. See Stone (1977), Fan (1992), Fan (1993) and Ruppert and Wand (1994) 

among others. 
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    In this article, we combine and present results from simulation experiments carried out by 

Kikechi et al (2017), Kikechi et al (2018) and Kikechi and Simwa (2018). 

 

THE PROPOSED ROBUST ESTIMATORS 

     Using the procedure of local polynomial regression for     and    , the super 

population model considered for estimating the finite population total estimators is given by, 

  

  (  )
   (  )                                                                                                                                                 ( ) 

Specifically, the following assumptions hold for the model considered in the nonparametric 

regression estimation of  (  ): 
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    The properties of the error are given by, 
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The functions  (  )  and   (  )  are assumed to be smooth and strictly positive. 

Consider the Taylor series expansion of  (  ) expressed as, 
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The Taylor series expansion is written in a general form expressed as, 
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    The constants   and   are solved using the least squares procedure by making    the subject of 

the formulae, squaring both sides, summing over all possible sample values and applying the 

weights to obtain a solution to the weighted least squares problem of the form 
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    The robust estimators for the mean regression functions and for the finite population totals as 

derived by Kikechi et al (2017), Kikechi et al (2018) and Kikechi and Simwa (2018) are defined 

as; 
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Implying that the finite population total estimator for     can be estimated using,  
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Properties of Model Based Robust Estimators 

     Considering the fixed equally spaced design model, the following assumptions made in 

Ruppert and Wand (1994) are used to derive the properties of the model based robust estimators 

of finite population totals: 

 (i) The    variables lie in the interval (   ). 

(ii) The function    ( ) is bounded and continuous on (   ). 

(iii) The kernel  ( ) is symmetric and supported on (    ). Also  ( ) is bounded and 

continuous satisfying the following: ∫  ( )
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(iv) The bandwidth   is a sequence of values which depend on the sample size   and satisfying 

    and     , as    . 

(v) The point    at which the estimation is taking place satisfies         . 

    The expectation, the bias, the variance, the MSE, the unbiasedness and efficiency and the 

asymptotic relative efficiency of the model based robust estimators have been derived by 

Kikechi et al (2017), Kikechi et al (2018) and Kikechi and Simwa (2018).  

 

 

SIMULATION STUDY AND RESULTS 
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Description of the data sets 

    Simulation experiments are carried out to evaluate the performances of the estimators. The 

data are generated from the super population model of the form, 

    (  )    (  )                
                                                                                                                (  ) 

    The data sets are obtained by simulation using specific models having relations      
 (     )    ,       (     )     and       (     )      (    (     )  
   and       (     ) (      )       (      ) for the linear, quadratic, bump and jump 

populations respectively. The      are generated as independent and identically distributed (iid) 

uniform (0, 1) random variables. The errors are assumed to be independent and identically 

distributed (iid) random variables with mean   and constant variance. The comparisons of the 

estimators of   according to their performances is based on Horvitz Thompson, Cochran, 

Dorfman and the local polynomial regression estimators  ̅  and  ̅  among others. 

    The Epanechnicov kernel given by 
 

 √ 
(  

 

 
  ) | |  √   is used for kernel smoothing on 

each of the populations due to its simplicity and easy computations using well designed 

computer programs. In Silverman (1986), the search for optimal bandwidth is done within the 

interval,  
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 ⁄
 where   is the standard deviation of the     . The bandwidths are data 

driven and are determined by the least squares cross validation method. For each of the four 

artificial populations of size    , samples are generated by simple random sampling without 

replacement using sample size     . For each combination of mean function, standard 

deviation and bandwidth, 500 replicate samples are selected and the estimators calculated. 

Table 1: Various Estimators used for comparisons in the simulation experiments 
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Table 2. Computational formulae of population totals for different estimators 

              Estimator                                  Formulae 
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Figure 1. Scatter Diagram for the Linear Data       Figure 2. Scatter Diagram for the Quadratic 

Data 
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Figure 3. Scatter Diagram for the Bump Data   Figure 4. Scatter Diagram for the Jump Data 

The population totals, prediction errors, the biases, absolute biases, efficiencies, MSEs and AREs 

for the estimators of finite population totals have been computed.  The relative efficiencies (RE) 

which examine the robustness of various estimators, i.e. the Horvitz-Thompson estimator, the 

REG estimator and the Dorfman estimator versus the proposed robust estimators have also been 

computed. Further, the 95 % confidence intervals (  ) and the average lengths (  ) of the 

confidence intervals of various estimators have been constructed (see Kikechi et al (2017), 

Kikechi et al (2018) and Kikechi and Simwa (2018)). 

Results 

     The results for the absolute biases, mean squared errors, relative efficiencies, confidence 

intervals and average length of confidence intervals for the various estimators are provided in 

tables 3, 4, 5, 6, 7 and 8 respectively. 

Table 3: The Absolute Bias of various estimators in four populations 

 

ABSOLUTE BIAS 

 HORVITZ-

THOMPSON

(HT) 

LINEAR 

REGRESSION 

(REG) 

DORFMAN 

(DORF) 

LOCAL LINEAR 

(LL) 

Linear 139.1395 3.650095 3.628214 3.626798 

Quadratic 163.4725 1.226636 0.403125 0.4323062 

Bump 157.7427 2.018801 0.4777851 0.4087753 
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Jump 1219.668 21.785 9.760465 9.485367 

 

Table 4: The Mean Squared Error (MSE) of various estimators in the four populations 

 

THE MEAN SQUARE ERROR (MSE) 

 HORVITZ-

THOMPSON 

(HT) 

LINEAR 

REGRESSION 

(REG) 

DORFMAN 

(DORF) 

LOCAL LINEAR 

(LL) 

Linear 514.9775 15.36639 15.74559 15.47903 

Quadratic 453.5207 1.521063 0.1713249 0.160443 

Bump 548.131 4.551133 0.2942485 0.1894413 

Jump 35691.94 512.8734 110.7915 97.02299 

Table 5: Relative Efficiency of various estimators versus the proposed estimators 

 

 

RELATIVE EFFICIENCY 

 HORVITZ-

THOMPSON (HT) 

LINEAR 

REGRESSION 

(REG) 

DORFMAN (DORF) 

 Relative Efficiency Relative 

Efficiency 

Relative Efficiency 

Linear 0.09467563 0.8093 0.95664 

Quadratic 0.000464731 0.9954403 0.962707 

Bump 0.0002038478 0.02743355 0.9433107 

Jump 0.003577862 0.1901854 0.9706123 
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Table 6: Confidence Intervals of various Estimators with respect to the four populations 

 

Table 7: Average Length of Confidence Intervals of various Estimators 

 

95% CONFIDENCE INTERVALS 

 HORVITZ-

THOMPSON 

(HT) 

LINEAR 

REGRESSION 

(REG) 

DORFMAN 

(DORF) 

LOCAL LINEAR 

(LL) 

 Lower 

Limit 

Upper 

Limit 

Lower 

Limit 

Upper 

Limit 

Lower 

Limit 

Upper 

Limit 

Lower 

Limit 

Upper 

Limit 

Linear 65.4357

9 

78.3565

2 

62.9203

6 

63.2486

1 

62.7597

8 

63.0129

8 

62.6295

3 

63.0637

8 

Quadrati

c 

61.7471

4 

62.4127

5 

60.2973

6 

60.3064

5 

60.2582

7 

60.2785

3 

60.4441

8 

60.4761

5 

Bump 88.4307

7 

92.8533

5 

93.0108

7 

93.1451

6 

92.0642

4 

93.3488

9 

91.9164

2 

93.1867

1 

Jump 503.683

6 

565.580

7 

479.945

8 

495.730

6 

460.766

7 

479.152

9 

465.117

1 

483.177

8 

 

AVERAGE LENGTH OF CONFIDENCE INTERVALS 

 HORVITZ-

THOMPSON 

(HT) 

LINEAR 

REGRESSION 

(REG) 

DORFMAN 

(DORF) 

LOCAL LINEAR 

(LL) 

Linear 12.92073 0.3282467 0.2532001 0.4342478 

Quadrati

c 

0.6656047 0.009090092 0.02025908 0.03197243 
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Table 8: The Bias and MSE for  ̅  and  ̅  in the three artificial populations 

 

                                Linear                                           Quadratic                                        Bump 

                                 ̅             ̅                                      ̅               ̅                                     ̅                

 ̅                    

BIAS                5.507608    3.777348                         4.7372       0.45116                       5.293896       

0.4187236 

MSE                 100.8874    15.40735                        18.40769    0.1601695                   43.9272         

0.1896261 

 

DISCUSSION 

In all the populations considered according to table  , the Horvitz-Thompson estimator was the 

poorest resulting in large biases as compared to the other three finite population total estimators. 

For all the biases computed, the Local Linear Regression estimator is superior and dominates the 

Horvitz-Thompson estimator and the Linear Regression estimator in all the populations in 

consideration. The Local Linear regression estimator also dominates the Dorfman estimator for 

all the populations except when the population is quadratic. 

The MSE results in table   indicate that the Local Linear estimators outperform the Linear 

Regression estimator in all the populations except when the population is linear. The Local 

Linear Regression estimators are not only superior to the popular Kernel Regression estimators, 

but they are also the best among all linear smoothers including those produced by orthogonal 

series and spline methods. In general, Local Linear regression estimation removes a bias term 

from the kernel estimator, that makes it have better behavior near the boundary of the     and 

smaller MSE everywhere.   

Further, results in table   show that the relative efficiency of the proposed Local Linear 

estimators to the Horvitz-Thompson estimator, the REG estimator and the Dorfman estimator is 

less than . This implies that the proposed Local Linear estimators have a smaller variance than 

the three estimators and thus the three estimators are less efficient. Generally, the Local Linear 

regression estimators outperform the HT estimator, the REG estimator and the DORF estimator 

in all the populations implying that they are robust and are the most efficient estimators.  

Bump 4.422574 0.1342954 1.284649 1.270295 

Jump 61.8971 15.78477 18.38621 18.06073 
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In table  , the confidence intervals indicate that the Local Linear regression method dominates 

the REG and Dorfman methods when the model is incorrectly specified. Generally, the model 

based estimators are much far better than the traditional design based estimators. The biases 

under the model based approach are also much lower than those for the design based approach in 

different populations under consideration. 

Finally, we observe in table   that the biases and MSEs computed for the local polynomial 

regression estimator  ̅  are small in all the three populations. The results therefore indicate that 

the local polynomial regression estimator  ̅  is superior and dominates the local polynomial 

regression estimator  ̅  for the linear, quadratic and bump populations and thus  ̅  is the most 

efficient estimator.  

 

CONCLUSION 

In this article, we have reviewed and presented model based robust estimators of finite 

population totals using the procedure of local linear regression as studied by Kikechi et al (2017), 

Kikechi et al (2018) and Kikechi & Simwa (2018). Results of the bias, mean squared error, 

relative efficiency, confidence intervals and average length of confidence intervals for the 

various estimators have been presented. The bias results show that the local linear regression 

estimators dominate the Horvitz-Thompson estimator for the linear, quadratic, bump and jump 

populations. The MSE results show that the local linear estimators are performing better than the 

Horvitz-Thompson estimator and Dorfman estimator, irrespective of the model specification or 

misspecification. Results also show that the local linear regression estimators are robust and are 

the most efficient ones. 

Results further indicate that the confidence intervals generated by the model based local linear 

procedure are much tighter than those generated by the design based Horvitz-Thompson method, 

regardless of whether the model is specified or misspecified. It has been observed that the model 

based approach outperforms the design based approach at     coverage rate.  

Generally, the local linear regression estimators are not only superior to the popular kernel 

regression estimators, but are also the best among all linear smoothers including those produced 

by orthogonal series and spline methods. The estimators adapt well to bias problems at 

boundaries and in regions of high curvature and do not require smoothness and regularity 

conditions required by other methods such as boundary kernels. Simulation experiments carried 

out on the proposed Local Linear regression estimators in comparison with some estimators that 

exist in the literature indicate that the proposed estimators are robust and are the most efficient 

estimators. 

Further, the local polynomial regression estimators  ̅  and  ̅   of finite population totals have 

been studied and comparisons made. Analytically, variance comparisons are explored using the 

local polynomial regression estimator  ̅  for     and the local polynomial regression estimator 

 ̅  for     in which results indicate that the estimators are asymptotically equivalently 

efficient. Simulation experiments carried out in terms of the biases and MSEs show that the local 

polynomial regression estimator  ̅  outperforms the local polynomial regression estimator  ̅  in 

all the three artificial populations and therefore,  ̅  is the most efficient estimator.  
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