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Abstract 

Detection of structural change in volatility of a time series is very important for understanding 

volatility dynamics and the stylized facts observed in financial time series. By applying the 

Nadaraya Watson kernel estimator of the mean function, estimated residuals are obtained. In this 

work, a Kolmogorov Smirnov type test statistic for change point estimation is developed and 

applied to conditional variances obtained from the squared residuals. The consistency of the 

change point estimator is shown through simulations. The developed estimator is then applied to 

KES/USD exchange rate data set to estimate a single change point. 
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INTRODUCTION 

When doing change point analysis, the major point of interest is to decide if the observations 

follow one model or if there is at least one-time point when the model is believed to have 

changed. This therefore results in two sub-fields of change point analysis; change point detection 

and change point estimation. Change point analysis normally assumes that it is possible to 

segment the data into regimes and that the data structure is homogeneous within each regime. Of 

importance is that the change is assumed to be abrupt (as though each occurs completely 

between two observations) and not gradual or smooth. Although in many settings multiple 

change-points could be of paramount interest, we shall only seek to detect change point through 

the assumption of At Most One change point approach. Change point analysis can be performed 

in either the offline setting or online setting or by estimating single change point versus multiple 

change point among other scenarios. We define change point detection as the problem of finding 

abrupt changes in data when a property of the time series changes. For each observed time series, 

the instant where these structural changes occur are called change points. The time moment 

when the model has changed is called change point. Other synonyms for change point include 

but not limited to segmentation, structural breaks, break points, regime switching, and detecting 

disorder. Unlike change point detection, change point estimation tries to model and interpret 

known changes in the time series rather than identifying that a change has occurred. Change 

point estimation (estimates) focus on describing the nature and degree of the known change. 

Change points can be found in a wide range of literature including quality control, economics, 

medicine, environment, and even linguistics. Detection of large "homogeneous" segments of data 
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enables one to identify "hidden" regularities in a time series behavior and to create a 

mathematical model for each segment of homogeneity. One choses change point with the 

intention of maximizing the separation between two segmentation. Thus, the goal of change 

point detection and estimation is to recover these segments as accurately as possible. 

Statement of the problem 

A good change point estimation method in conditional variance (volatility) should be sensitive to 

the skewness of the observations (which does not happen when ranking is done) e.g. when 

dealing with financial data. With returns, there are times of uniquely high returns and others of 

uniquely low returns and thus rank bases test statistics makes the data robust to outliers. This is 

because, by ranking the observations, there is mitigation of the impact of extremely high or low 

returns (outliers). Reason being that regardless of how extreme an outlier is, it often receives the 

same rank as if it were slightly larger than the second largest observation. This is because all 

ranks are equally far apart from each other violating the stylized facts of returns. Hence, we 

adopt a non-ranking method of the observations. Thus, we aim to propose a theory of estimating 

the change point in volatility of a financial time series with USD/KES exchange rate dataset 

application in mind. In this work, the regression function (conditional mean function) and the 

conditional variance function are unknown hence we impose few or no restrictions to our data 

set. The inference based on non-parametric models is usually robust against misspecification of 

the underlying regression model and thus non-parametric models effectively avoid the problem 

of misspecification normally found in parametric approaches, which may yield inconsistent 

estimators. We thus take a non-parametric approach for our results to be robust with respect to 

model specifications. 

LITERATURE REVIEW 

The first published article concerning change points analysis was done by  (Page, 1954) who 

considered testing for a potential single change point for data from a common parametric 

distribution motivated by a quality control setting in manufacturing. Since then, change point 

analysis has developed rapidly with considerations on either multiple change point detection and 

estimation, different types of data and other assumptions being put into consideration. 

(Chen G. a., 2005) proposed a procedure that was able to combine the least squares approach 

which does not require specific forms of the marginal or the transitional density functions (i.e the 

regression and conditional variance functions) to estimate the change points in the conditional 

variance {volatility} of a non-parametric model of time series in which the regression and the 

conditional variance were unknown. Further, the asymptotic properties of the estimators and test 

statistics were established. The location of the change point(s) was not been specified a priori 

like some other studies from previous scholars had assumed. Finally, the proposed test was 

consistent and more powerful than the non-parametric ones already existing tests in literature. 

Finally, the practicality of the methods was by application to the Hong Kong stock market index 

(HSI) series. 

Change point analysis by (Gichuhi, 2008) in Bernoulli random variables based on neural 

networks motivated by a regression setting was the focus of the researcher. The parameters of the 
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model were estimated using neural network method with the evidence that parameter estimates 

were only identifiable up to a given family of transformations and further derived the consistency 

and asymptotic normality of the network parameter estimates. A neural network based likelihood 

ratio test statistic to detect a change point in a given set of data was determined. The limiting 

distribution of the change point estimator was established. The results showed that the sample 

size, change point location and the size of change had an influence on change point detection. 

Through simulation, percentile bootstrap method showed superiority to profile log-likelihood 

ratio method in determining the change point confidence intervals. 

Modeling of financial volatility in the presence of abrupt changes is a research done by (Ross, 

2013) where the author incorporated the ICSS GARCH algorithm to detect changes in volatility 

of financial returns. Although the algorithm was simple to implement, its parameters were based 

on the assumption of the financial returns following a Gaussian distribution and thus can produce 

very many spurious jump points if this assumption is violated. By applying ICSS to heavy tailed 

series, poor results were found since extreme observations were misinterpreted as regime shifts. 

This indicated that the ICSS algorithm was only applicable to detect change points to weekly 

returns and using the algorithm to daily returns could generate too many spurious false positives 

for it to be useful because of the number of extreme values. Thus, due to this problem of ICSS 

GARCH algorithm, the author replaced the ICSS segmentation step with a technique which was 

purely based on non-parametric statistics which makes no assumptions on the true returns 

distribution and which in turn allows one to ignore the Gaussian assumptions and allows for its 

deployment on the daily returns which he coined NPCPM-GARCH. The author further analyzes 

several stock indices for change points in volatility mainly the Dow Jones Industrial Average, the 

German DAX, the VIX volatility index and the Japanese Nikkei 225. He further compared his 

results with those obtained from ICSS GARCH and found that his method gave a better fit to the 

data sets when measured using a standard criteria i.e at the same level of significance. The 

research showed that the ICSS algorithm was not able to ignore the assumption of Gaussian, 

which contradicted with the stylized facts of returns leading to the detection of very many 

change points some of which did not correspond to genuine long-term changes in volatility (false 

positives). This prompted the researcher to adopt the Mood test statistic in a sequential setting 

and which was found to work and detect true change points with non-Gaussian data. 

Non-Parametric Time Series Modelling 

For a given time series             non-parametric methods are used to analyze the features 

of interest. Conditional variances or conditional quartiles are required if interval forecasts or 

estimates of future volatility are desired as shall be necessary in this work. Suppose we let 

        
  

    
  be the return process in period   for          and                  be the 

return processes at any time periods less than  ,    is the price process of the stock in period   for 

        . We assume that there is a non-parametric and non-linear relationship between the 

current return values and the previous return values, modeled by a non-parametric autoregressive 

process of this form 

                                                                              ) 
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where    a series of innovations (random shocks) which is independent of              

satisfying 

    |                              

     is the conditional mean (smooth) function in period   given past time periods 

                 and it is the minimum mean squared error (MSE) 1-step predictor of   . The 

approximation precision of     , increases with the sample size. Since in many situations point 

forecasting is too limited an objective, and the future volatility and higher order moments are of 

interest in addition to the conditional mean, we therefore let the following representation of the 

innovations    to hold  

                                                                                                 

and thus extend equation 1 above to a more general non-parametric conditional heteroskedastic 

model as in equation 4 below  

                                                                                             

    |                                               is the non-linear 

autoregressive conditional mean (smooth) function of the returns. 

Variance   |                            
                    is the non-linear 

autoregressive conditional variance (smooth) function of the returns, 

   is an independent and identically distributed sequence of random variables with   

        |               , 

Variance    |               

and independent of                   

Equation 4 above is a non-parametric autoregressive conditional heteroscedastic model and is the 

most flexible non-parametric time series model because it does not impose any (parametric) 

particular form on the conditional mean and conditional variance functions. Due to curse of 

dimensionality problem, where by as the dimension   grows, statistical and computational 

inefficiency comes in, we set     so that equation 4 above becomes   

                                                                                                          

Estimates of the functions      and       are obtained by applying the Nadaraya Watson 

estimator of the unknown regression function (conditional mean at the evaluation points) and its 

properties such that 

 ̂     
∑   
   (

      
  

)  

∑   
   (

      
  

)
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 ̂ 
     

∑  (
      
  

) (    ̂      )
  

 

∑  (
      
  

) 
   

                                                             

Under some assumptions, it can be shown that  ̂     is a consistent estimator of     . 
         is a kernel function, which is continuous, symmetric, integrating to one with 

bounded support        in that the estimator only uses the observations in the interval    
         and    is the bandwidth parameter or the tuning parameter. The bandwidth 

(smoothing parameter) controls the level of neighboring such that for a given kernel function   

and a fixed   , observations (         with      far from   are given more weights as     

increases. This means that the larger the bandwidth is chosen, the less the mean function  ̂      
is changing with  . Therefore, we can conclude that the degree of smoothness of the conditional 

mean function increases with the bandwidth. Therefore, it means that a weighted average of the 

observations is used as an estimator for the conditional mean function   

The Nadaraya Watson kernel regression estimator was first proposed independently by 

(Nadaraya E. A., 1964) and (Watson, 1964) 

The estimators of the mean function and conditional variance function have shown to be strongly 

consistent and asymptotically normal for   mixing observations. In this research, utilize the 

Epanechnikov kernel since it is the most efficient in minimizing the Mean Integrated Squared 

error putting in mind that the choice of the kernel is not as important as the choice of the 

bandwidth (this does not mean we disregard the choice of the kernel). 

It is important to remember that when a kernel estimator is applied to dependent data, e.g. in 

financial time series returns data like in the case of this work, then it is affected only by the 

dependence among the observations in a small window and not by that between all data. This 

fact therefore reduces the dependence between the estimates so that most of the techniques 

developed for independent data are applicable as well. This is what we shall refer to as the 

Whitening by window principle. Also, the memory of the underlying process decreases with 

distance between events and that the rate of decay can be estimated by the mixing conditions 

some of which include the strong   mixing condition and the   mixing condition as below 

  (Strong) mixing condition. A sequence {  }  is said to be   mixing if  

   

    
       

 |               |              and      as     and   
 
 is the 

  field generated by         

  (Uniformly) mixing condition. This is a stronger condition which establishes that a sequence 

{  }  is said to be   mixing if 

|               |          for any     
 and       

  and    0 as    . For 

more on this, visit (Robinson, 1983). 
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The mixing conditions above control the dependency between    and   as the time distance     

increases. The rate at which    and    goes to zero plays a noble role in showing the asymptotic 

properties of the non-parametric smoothing procedure. These conditions are usually difficult to 

check but if the process follows a stationary Markov chain, then geometric ergodicity imply 

absolute regularity, which in turn implies strong mixing conditions. Proposition 6 in subsection 

2.4.2.3 of (Doukhan, 2012) give conditions on     and the innovations that imply geometric 

ergodicity of {  }. This implies strong mixing properties with exponential mixing rates. 

Equation 5 can generate heavy tailed distributions and we demonstrate this by considering a 

simple model  

                                                                                                                                        

with     having a standard normal distribution. By Jensen’s inequality (Pishro-Nik, 2016), 

Kurtosis      
    

  

  (  
 )  

 
            

  

  (          
 )  

  
           

  (        )
 
 
                                                            

  

This heavy tailed-ness feature implied by equation 5 makes it a successful mode for modelling 

data, which exhibit heavy tails e.g. financial time series data of returns. It is important to note 

that non-parametric time series approach has been highly appreciated by practitioners as a 

preliminary search method aimed at establishing the final parametric model. 

Single change point test statistic 

In this section, we derive an estimator for change point in volatility of a non-parametric 

regression model for time series as shown in equation 5. Since we are in the off-line setting and 

only the conditional variance function that is changing with time, with the assumption that the 

conditional mean function is not changing with time, we shall formulate the change point 

problem as a hypothesis testing procedure of the following form 

      
             

                                                                    

While the at most one change point alternative is  

   {
  
             

                         

  
             

                       
                (11) 

We want to locate (estimate) the change point position  ̂ and probably the number of change 

point (s) (Chen J. a., 2001). The regression function (conditional mean function)     , the 

conditional variance function     , the distribution of the covariate as well as the distribution of 

the errors is completely unknown and we have not made any parametric form for them meaning 

our approach is fully non-parametric.  

If we consider    when we do not have a change point in volatility, we can rewrite equation 5  
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  {          }

             
                        

         . 

Which in turn implies that the conditional variance function of   . 

 {           }
                                                                                         

If we consider the alternative hypothesis,     we can re-write the non-parametric model 3 with a 

single change point in volatility as  

                              
  {          }

    
         

                          

This means that under the alternative hypothesis,  

 {           }
    

                                                                              

                 . 

In this work, we assume that the conditional mean function (regression function) is stable and 

does not change with time but the conditional variance function is not stable and that 

    |         var   |              
    with     being a sequence of random variables.  

Suppose    
    ̂      

 ̂      
          . We are concerned with testing non-parametrically our 

hypothesis above by defining the partial sum of the squared residuals across all possible sample 

segments as shown in equation 16 below 

   ∑  
 

 

   

    ∑  
 

 

   

         ∑   
 

 

     

                                             

Where       where     
       and     

        for          denotes the conditional 

variance functions of the sequence {  
 }   
  and {  

 }     
  before change point instant and after 

the change point instant respectively. We propose a change point test statistic which is able to 

quantify the deviation between     
       and     

        written as        
        -

     
         where for     

  (    
               

       )  (∑  |       |
 

 

   

)

 
 

                                                      

Motivated by the    norm and properties of    space, the change point test statistic and change 

point estimator is constructed. We set     and work in    norm.    is a weight function, which 

is measurable and which depends on the sample size   and the change point position   . It gives 

the sensitivity of the test statistic against different alternatives in the sense of the position of 

change. The weight function is arbitrary chosen so that it satisfies the condition that  



MACHAKOS UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, ISSN2707-6741 VOL. 2, ISSUE 3, 
JUNE 2021 

 
 

 

  

   
8 

 

∑  
 

 

   

 
 

 
∑  

 

 

   

 
 

 
(∑  

 

 

   

 
 

 
∑  

 

 

   

)                                                             

Simple Algebra will help derive the Kolmogorov Smirnov type statistic for change point 

detection. 

The Kolmogorov Smirnov type statistic upon derivation becomes 

   (
 

 
(  

 

 
))

 
 

|
 

 
∑  

  
 

   
∑   

 

 

     

 

   

|                                                               

The KS type test statistic above gives more weight to the observations at the tails of a 

distribution and hence it is an appropriate statistic for change point detection especially when 

handling financial time series data, which exhibit heavy tails. 

Single change point estimator 

The KS type estimator of change point will be the point where the KS type test statistic has its 

global maximum. This is because, the global maximum will often occur at the area of true 

change point (The point where we have maximum distance between the conditional variances of 

the residuals). Hence, a good choice of the estimator for the time of change is as given in 

equation 20 below as 

 ̂  Arg     |  |                                                                                              

The estimate  ̂ is the point at which there is maximal sample evidence for a break in the squared 

residual process. In the presence of a single break, we shall show, through simulation, that  ̂ is a 

consistent estimator of the unknown change point    .  

Application of the Ks Type Estimator 

 Consider the model below   

                                                                                                                                  

Suppose the model has a single change point in the volatility function defined as  

        {
         

                                                                                                            

           
                                                                                       

 

                            

Where   =           and    is a sequence of independent and identically distributed random 

variables with mean zero and variance   assumed from a normal distribution. 
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We thus create a table under different sample sizes with 1000 bootstrap samples in each. We fix 

the change point at 
 

 
 ,  

 

 
  and 

 

 
 . In each simulation, the estimates of the change point highly 

depended on the locations of the change points and the sample size. The estimates were most 

accurate if    was fixed around the middle of the sample. 

To demonstrate consistency of the change point estimator, the distance between an estimation 

and the true change point index is obtained, then normalized by the size of sample (Truong, 

2018). This error was found to be decreasing to zero as the size of the samples grew unbounded 

which further verified the asymptotic consistency of the change point estimator. Consistency 

results only deal with change point fractions and not the time indexes themselves. We investigate 

the consistency of the estimator when the change point is fixed at 
 

 
 ,  

 

 
  and 

 

 
  . Note that we 

are losing two observations in each simulation due to curse of dimensionality problem. The 

results from table 1 below showed that the change point estimator  ̂ was a consistent estimator of 

  . 

Table 1 : Table to demonstrate consistency of the change point estimator 

 

Sample 

size T  

True change 

point instant    
Estimated change 

point instant  ̂ 
| ̂    |

 

 
   

50   

 
      16 

 

 
        

 

 
        

14 

17 

20 

0.04167 

0.14583 

0.27083 

100  

 
     =32 

 

 
        

 

 
        

26 

36 

48 

0.06122 

0.13265 

0.18367 

200  

 
     =66 

 

 
        

 

 
    

     

53 

80 

107 

0.06566 

0.09596 

0.12626 

500  

 
     =166 

 

 
    

     

149 

226 

309 

0.03414 

0.04619 

0.04619 
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1000  

 
     =332 

 

 
    

     
 

 
    

     

317 

484 

645 

0.00751 

0.01503 

0.01151 

 

DATA ANALYSIS AND RESULTS 

We apply the change point estimator to historical data set of USD/KES exchange rate data set 

from 2 January 2013 to 18
 
March 2019 to estimate change point in the conditional variance 

function (volatility) of exchange rate returns. The data set consisted of 2444 daily observations 

and the plot of the exchange rates is as shown in figure 1 below 

 

 

Figure 1: USD /KSH exchange rate 

A plot of the returns is as shown in the figures 2 and 3 below 
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Figure 2: Returns         Figure 3: Returns    

 

 

A plot of the squared residuals is as shown in figure 4 below 

 

Figure 4: plot of the squared residuals 

A plot of the estimated conditional variances and residuals is as shown below 

 

Figure 5: Estimated conditional variances.   Figure 6: Estimated residuals. 
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Figure 7: Returns with change point           Figure 8:  Returns with estimated change  

 at 551     points at 551 and 35 

 

 

From figure 2, we investigated the possibility of a single change point and were able to estimate 

it at point 551 corresponding to 13
 
February 2012. We also investigated the possibility of another 

change point by applying binary segmentation approach. Binary segmentation procedure allows 

for estimating the position of a single change point at each stage. The change point estimator is 

further applied to each sub-sequence of the returns. The next change point was estimated at point 

358, which corresponded to 17
 
May 2011 and was as shown in figure 8 above. 

The corresponding plots of the change point statistics at  ̂=551 and  ̂=358 were as shown in 

figures 9 and 10 below respectively 

 

Figure 9: Change point statistic with estimated  Figure 10: Change point statistic with 

Change point at point 551 estimated change point at point 358. 

 

Discussions 

From figure 1, there is an increasing trend between January 2010 and October 2011 where the 

exchange rate prices were at the peak. Afterwards, one observes a decreasing trend after which 

the exchange rates started to rise again. The historical events associated with the behavior of the 

exchange rate plot were established. In 2011, there was the August 2011 stock market fall 

(Kibiy, 2016) because of price drop of stock prices in the stock exchanges across the major 

world markets in North America, Europe and Asia. The evidence from the seventh Bi-Annual 

Monetary Policy Committee Report issued by Central Bank of Kenya, in October 2011, can 

further support these results. A combination of both domestic and International economic 

developments during the six months period to October 2011 determined the conduct of monetary 
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policy for Central Bank of Kenya overall mandate of price stability. These developments hence 

resulted in an escalation of inflationary pressure and exchange rate volatility, hence distorting the 

economy's recovery from the adverse effects of the global financial crisis. The USD/KSH 

exchange rate depreciated from 83.89 to 101.39 in the period April 2011 to October 2011. The 

depreciation of the shilling against US dollar could have been due to the buildup in the deficit in 

the current account. Current account is the gap between imports and exports of goods. This was 

because of a rise in imports of machinery and transport equipment, which are key inputs for the 

manufacturing sector required for the economic recovery process as well as the uncertainty in the 

global financial markets, caused by the debt crisis in the Eurozone. 

From figure 7, to account for the change point at 17 May 2011, the foreign exchange market 

witnessed significant volatility between May 2011 and October 2011 reflecting the general 

volatility in the global financial markets as well as increase in demand for foreign exchange to 

finance imports. The result was that the Kenyan Shilling just like other currencies in the region 

and other global markets therefore weakened substantially e.g. the Kenyan shilling against the 

US dollar depreciated from an average of 84.2 in March 2011 to 101.39 in October 2011 

(20.42% in percentage depreciation). Other reasons attributed to the change point in volatility on 

17 May 2011 were high international food and fuel prices, the drought compounded by the 

conflict experienced in the Horn of Africa, the Euro crisis and major inefficiencies in Kenya’s 

agriculture sector.  

To account for the change point in 13
 
February 2012, in both Kenya and Uganda, the economies 

reported slow growth at the beginning of 2012 following high inflation and high commercial 

bank interest rates. 

CONCLUSION AND RECOMMENDATIONS 

In this paper, we have proposed a procedure to estimate change point in volatility of a time series 

modelled using a non-parametric approach. This non-parametric modeling is important in 

finance and non-parametric estimators are very powerful in distinguishing among many models 

like derivative pricing models. We have demonstrated the consistency of the change point 

estimator through simulations and seen that our estimator is consistent. One can easily extend the 

method to multidimensional non-parametric models (models of higher dimension) of the form 

                                               where the regression function and the 

conditional variance functions should be estimated using multivariate kernel methods.   (.) , 

     are multiple variable   functions, while at the same time being careful on how to deal with 

the curse of dimensionality problem which may lead to poor performance in higher dimensional 

regression problem since for    , the subspace of      spanned by the data is rather empty. 
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