

MACHAKOS UNIVERSITY COLLEGE

(A Constituent College of Kenyatta University) University Examinations for 2015/2016

SCHOOL OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MECHANICAL AND MANUFACTURING ENGINEERING

FIRST SEMESTER EXAMINATION FOR DIPLOMA IN MECHANICAL ENGINEERING

FLUID MECHANICS II

DATE: 4/8/2016

TIME:

INSTRUCTIONS:

Question 1 is compulsory Attempt any TWO other questions from section

- 1. a) Explain the following terms as used in fluid mechanics
 - (i) Uniform flow
 - (ii) Steady flow
 - (iii) Mass flow rate
 - (iv) Discharge
 - b) Stating the assumptions made, show from basic principles that Frictional head loss h_f of a fluid flowing at a mean velocity, \overline{v} , in an Inclined Pipe of length L and diameter D is given by;

$$h_f = 4f \frac{L\nabla^2}{D2g}$$

Where g is gravitational acceleration and f is the friction coefficient.

(15 marks)

(3 marks)

c) Using Rayleigh's method find an expression for the drag force F on smooth sphere of diameter D, moving with a uniform velocity V in a fluid of density ρ and dynamic viscosity μ . (12 marks)

A" three throw" pump has a cylinder of 250 mm diameter and a stroke of 500 mm each. The pump is required to deliver 0.1 m³/s, at a head of 100 m. The friction losses are estimated to be 1 m in the suction pipe and 19 m in the delivery pipe. Velocity of water in the delivery pipe is 1 m/s, overall efficiency is 85% percentage slip 3%. Determine speed of pump in rev/min and actual power required to drive the pump.

(20 marks)

3 Show that when a fluid flows between two parallel plates at a distance h, and length L, the velocity V, of the flow of an elemental strip at a distance y, from the axis of the plates is given by;

$$V = \frac{P}{2\mu L} \left\{ \frac{h^2}{4} - y^2 \right\}$$

Where P is the pressure difference between the ends of the plates and μ is the dynamic viscosity. (20 marks)

- 4. The pressure ΔP in a pipe of diameter D and length l due to viscous flow depends on the velocity V, viscosity μ , and density ρ . Using Buckingham's π -theorem, obtain an expression for ΔP . (20 marks)
- 5. From basic principles, show that the loss of head, h, when a pipe undergoes a sudden enlargement is given by,

$$H=(\underline{V_1}-\underline{V_2})^2$$
2g

Where V_1 and V_2 are velocities at sections.

(20 marks)