MACHAKOS UNIVERSITY COLLEGE

(A Constituent College of Kenyatta University)
University Examinations for 2015/2016

SCHOOL OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MECHANICAL AND MANUFACTURING ENGINEERING
FIRST SEMESTER EXAMINATION FOR DIPLOMA IN MECHANICAL ENGINEERING

MECHANICS OF MACHINES II

DATE: 5/8/2016
TIME:

INSTRUCTIONS:

Question 1 is compulsory

Attempt any TWO other questions from section

1. a) State three practical applications of -:
(i) Belt drives
(ii) Friction clutches (3 marks)
b) A simple train has three gears. Gear A is the input and has 50 teeth. Gear C is the output and has 150 teeth. Calculate the gear ratio and the output speed. The input torque on gear A is 12 Nm and the efficiency is 75%. Calculate the output power and holding torque.
c) From basic principles show that the Torque, T, transmitted by a single disc plate clutch assuming uniform wear theory is given by;
$\mathrm{T}=\mu \mathrm{W}\left(\underline{\mathrm{R}}_{1}+\mathrm{R}_{2}\right)$
2
Where $\mu=$ coefficient of friction
$\mathrm{W} \quad=$ Axial load
$\mathrm{R}_{1}+\mathrm{R}_{2}=$ outer and inner radii
(17 marks)
2. A ship is dragged through a lock by means of capstan which has a diameter of 500 mm , turns at $30 \mathrm{rev} / \mathrm{min}$. The rope makes 3 complete turns around the capstan, μ being 0.25 and at the free end of the rope a pull of 100 N is applied. Find the pull on the ship and the power and the power required to drive the capstan
3. A 40 kg mass A mounted on an axle at a distance of 1 m is to be balanced by two masses B and C. The balancing masses are to be mounted in the planes 1 m and 2 m on either sides of 40 kg mass at radii 1 m and 2 m respectively from the axis of rotation. Find the magnitudes of the balancing masses.
4. a) The contact surface in a cone clutch have effective diameter of 75 mm . The semi-angle of the cone is 15^{0}, and $\mu=0.3$. Find the torque required to produce slipping if axial force applied is 180 N .
b) This clutch in 4 (a) is employed to connect an electric motor running uniformly at 100 rpm with a flywheel which initially stationery. The flywheel has a mass of 13.5 kg and a radius of gyration of 150 mm . Calculate the time required for the flywheel to attain full speed and also the energy lost in the slipping of the clutch.
5. A leather belt 125 mm wide and 6 mm thick transmits power from a pulley 750 mm diameter which runs at $500 \mathrm{rev} / \mathrm{min}$. Find the maximum power which can be transmitted (20 marks)
