

MACHAKOS UNIVERSITY COLLEGE

(A Constituent College of Kenyatta University) University Examinations for 2015/2016 Academic Year

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF PHYSICAL SCIENCES

FIRST SEMESTER EXAMINATION FOR DEGREE IN BACHELOR OF EDUCATION (SCIENCE)

SCH 305: CHEMICAL KINETICS

DATE: 1/8/2016

TIME: 8:30 – 10:30 AM

INSTRUCTIONS:

- The paper consists of **two** sections.
- Section **A** is **compulsory** (30 marks).
- Answer any **two** questions from section **B** (each 20 marks).

Useful information

- Gas constant, $R = 8.314 \text{ JK}^{-1} \text{mol}^{-1} (0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1})$
- 0 °C = 273.15 K

SECTION A - COMPULSORY.

1. a) Define the following terms as used in chemical kinetics:

i)	Elementary reactions	(1 mark)
ii)	Molecularity of a reaction	(1 mark)
iii)	Order of a reaction	(1 mark)
iv)	Rate law of a reaction	(1 mark)

- v) Activation energy (1 mark)
- b) The following data was collected for the reaction between hydrogen and nitric

oxide at 700 °C. $2H_{2(g)} + 2NO_{(g)} \rightarrow 2H_2O_{(g)} + N_{2(g)}$

Exp.	[H ₂] (M)	[NO] (M)	Initial Rate (M/s)
1	0.10	0.010	1.2 x 10 ⁻³
2	0.10	0.040	4.8 x 10 ⁻³
3	0.20	0.010	2.4 x 10 ⁻³

Determine the:

i) Rate law for the reaction (4 marks)

(1 mark)

(2 marks)

(2 marks)

- ii) Overall order of the reaction
- iii) Rate constant
- c) Ethyl iodide (C₂H₅I) decomposes at a certain temperature in the gas phase as follows: $C_2H_5I_{(g)} \rightarrow C_2H_{4(g)} + HI_{(g)}$. The following data was obtained.

Time (min)	0	15	30	48	75
[C ₂ H ₅ I] (M)	0.36	0.30	0.25	0.19	0.13

- i) Determine if the above data support a first order reaction. (5 marks)
- ii) Calculate the rate constant for the reaction.

 d) i) The second-order rate constant for the decomposition of nitrous oxide to nitrogen molecules and oxygen atoms has been determined at various temperatures:

T (°C)	600	650	700	750
k (M ⁻¹ s ⁻¹)	0.00187	0.0113	0.0569	0.244

Determine graphically, the value of the activation energy of the reaction (4 marks)

- ii) The rate constant of a first order reaction was found to be 10 s^{-1} at $300 \text{ }^{\circ}\text{C}$. If the activation energy is 83 kJ/mol, calculate the temperature at which its rate constant is $2.1 \times 10^{-2} \text{ s}^{-1}$ (4 marks)
- e) Explain **three** factors that increase the reaction rate of a chemical reaction

(3 marks)

SECTION B

ANSWER ANY TWO QUESTIONS

2.	a)	i)	Define the term catalyst	(1 mark)
		ii)	Explain the effect of a catalyst on the rate of a chemica	al reaction. (3 marks)
		iii)	Describe three types of catalysis and explain their role reactions	in chemical (8 marks)
	b)	For a	n ezyme-catalysed reaction, show that $v = \frac{v_{max}[S]}{K_M + [S]}$ wh	here v is the rate of
		reaction	on, (S) is the substrate concentration and K_M is the Mich	aelis constant (8 marks)
3.	a)	Expla	in the meaning of the following:	
		i) Si	imultaneous reactions	(1 mark)
		ii) C	omplex reactions	(1 mark)
		iii) C	onsecutive reaction	(1 mark)
		iv) Pa	arallel reactions	(1 mark)
		v) U	nimolecular reactions	(1 mark)
	b)	The reaction between NO ₂ and CO to produce NO and CO ₂ is thought to occur in		
		two si	teps:	
			Step 1: NO ₂ + NO ₂ $\xrightarrow{k_1}$ NO + NO ₃	
			Step 2: NO ₃ + CO $\xrightarrow{k_2}$ NO ₂ + CO ₂	
		Exper		
		i)	Write the equation for the overall reaction	(3 marks)
		ii)	Identify the intermediates	(2 marks)

iii) Identify the rate-determining step (2 marks)

	c)	The l	inetic equation for a reaction of order n in substance A is written as:			
		$-\frac{d[}{d}$	$\frac{A}{kt} = k[A]^n$. Show that the half-life, $t_{1/2}$, is: $\ln t_{1/2} = \ln \left(\frac{2^{n-1} - 1}{k(n-1)} \right)$	$\left(-\frac{1}{n} \right) - (n-1) \ln A_0$		
		such	that A_0 is the initial molar concentration of substance A.	(8 marks)		
4.	a)	i)	Define half-life $(t_{1/2})$ of a reaction	(1 mark)		
		ii)	Show that for a first order rate reaction, the half-life $(t_{1/2})$ is	independent of		
			initial concentration.	(5 marks)		
		iii)	The half-life of a first order reaction is 24 days, calculate the	calculate the rate constant		
			for the reaction	(3 marks)		
	b)	Shov	w that for a first order reaction kinetics; $[A] = [A]_0 e^{-kt}$	(5 marks)		
	c)	Iodine atoms combine to form molecular iodine in the gas phase:				
		$I_{(g)} + I_{(g)} \rightarrow I_{2(g)}$ The reaction is second order and has a rate constant of 7.0 x 10 ⁹ M/s at 23 °C;				
		i)	If the initial concentration of I is 0.086 M, calculate the con	centration after		
			2 min	(3 marks)		
		ii)	Calculate the half-life of the reaction when the initial conce 0.6 M	entration of I is (3 marks)		
5.	a)	Expl	ain the use of the differential method in determination of	the order of a		
		chem	(6 marks)			
	b)	i)	Define a chain reaction	(1 mark)		
		ii)	Explain using the photochemical reaction between hydrogen	n and bromine,		
			the essential features of a chain reaction	(8 marks)		
	c)	Expl	ain the steady state approximation concept	(5 marks)		