

MACHAKOS UNIVERSITY COLLEGE

(A Constituent College of Kenyatta University)
University Examinations for 2015/2016 Academic Year
SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF PHYSICAL SCIENCES

FIRST SEMESTER EXAMINATION FOR
DIPLOMA IN ELECTRICAL ENGINEERING
DIPLOMA IN BUILDING AND CIVIL ENGINEERING

SCU 100: PHYSICS
DATE: 2/8/2016
TIME: 2:00-4:00 pm

INSTRUCTIONS: _Answer question one and any other two
Use: $\mathbf{g}=9.81 \mathrm{~ms}^{-2}$
Specific heat capacities of: Water $=4200 \mathbf{J ~ k g}^{-1} \mathrm{~K}^{-1}$

$$
\text { Copper }=400 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}
$$

Atomic masses for: $\mathrm{H}=1, \mathrm{O}=16$

SECTION A

QUESTION ONE (30MARKS)

a) Explain how a deformed body will behave when the deforming force is removed for an elastic body.
b) A length of copper wire of square cross-section measuring 1 mm by 1 mm is stretched by a tension of 40 N . Calculate the tensile stress in Pa.
c) Distinguish between distance and displacement.
d) Derive the first equation of linear motion.
e) A body is projected vertically upwards and reaches a height of 900 m . Calculate its initial velocity.
f) Define heat capacity. (2 marks)
g) A copper vessel of mass 0.1 kg has specific heat capacity $390 \mathrm{~J} \mathrm{~kg}^{-1}$. Calculate its heat capacity.
(3 marks)
h) A 10 V battery is connected to an ammeter, a resistor and a switch.
i) Draw a diagram of the circuit.
ii) If the ammeter reads 0.2 A , calculate the resistance of the resistor. (7 marks)

SECTION B

QUESTION TWO (20MARKS)

a) Derive an equation for the greatest height when a body is projectiled at an oblique angle (e). (5 marks)
b) Show that the Range is achieved when the angle of projection is 45°. (4 marks)
c) Explain what is meant by Centripetal force.
d) A body of mass 0.5 kg is whirled round a horizontal circle of radius 2.0 m with a constant speed of $10 \mathrm{~ms}^{-1}$. Calculate its centripetal force.
e) Sketch a graph of force against extension of a non-brittle wire. On the sketch, label the main points and the elastic and plastic regions.

QUESTION THREE (20 MARKS)

a) Define: (i). Speed
(ii). Velocity
b) Derive the third equation of motion
c) A body changes its velocity from $20 \mathrm{Kmh}^{-1}$ to $30 \mathrm{kmh}^{-1}$ in 60 second. Calculate the acceleration of the body in ms^{-1}.
d) A body is travelling at $20 \mathrm{~ms}^{-1}$. This speed is maintained for 120 seconds before it decelerates uniformly to rest in 180 seconds.
i) Sketch a velocity - time graph for the journey.
ii) From the graph, determine the average speed

QUESTION FOUR (20 MARKS)

a) Using kinetic theory explain how heat is transferred in a solid.
b) Define the following terms.
i) Molar heat capacity
ii) Specific heat capacity
iii) Latent heat
c) The temperature of 400 g of a certain metal is raised to $120^{\circ} \mathrm{C}$ and then placed in 100 g of water at $20^{\circ} \mathrm{C}$ contained in a copper calorimeter of mass 200 g . If the final steady temperature rises to $28^{\circ} \mathrm{C}$, calculate the specific heat capacity of the metal. (4 marks)
d) An electric kettle which produces energy at a rate of 3000 W contains an unknown amount of water. It takes 120 seconds to heat the water from $20^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$

Calculate: i) the mass of water in kg .
ii) Molar Heat Capacity of water.

QUESTION FIVE (30 MARKS)

a) State the factors which the resistivity of a conductor depends.
b) State Ohm's Law
c) Derive an expression for the resistance of three conductors connected in parallel.
d) Three resistors $3 \Omega, 7 \Omega$ and 12Ω are connected in parallel to a 24 V of internal resistance 2Ω. Calculate the current through the system. (4 marks)
e) A current of 3 A is flowing through a conductor of 4Ω resistance. Determine the potential difference which must exist between the ends. (3 marks)
f) Define a Coulomb of charge. (2 marks)
g) A current of 3 A passes through a circuit in 4 minutes. Calculate the number of coulombs.

