

MACHAKOS UNIVERSITY COLLEGE

(A Constituent College of Kenyatta University) University Examinations for 2015/2016 Academic Year

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF PHYSICAL SCIENCES

FIRST SEMESTER EXAMINATION FOR DIPLOMA IN EDUCATION (SCIENCE)

SCH 0201: CHEMICAL KINETICS AND THERMODYNAMICS

DATE:

TIME:

INSTRUCTIONS:

- The paper consists of **two** sections.
- Section **A** is **compulsory** (30 marks).
- Answer any **two** questions from section **B** (each 20 marks).

SECTION A - COMPULSORY.

QUESTION ONE

- a) Define each of the following terms used in Thermodynamics. (5 marks)
 - i. System
 - ii. Surrounding
 - iii. Open System
 - iv. State Function
 - v. Closed System
- b) Write the rate expressions for each of the following reactions
 - i. $\Gamma_{(g)}^{+} OCL_{(g)}^{-} \longrightarrow CL_{(g)}^{-} + OL_{(g)}^{-}$ (2 marks)
 - ii. $4NH_{3(g)} + 5O_{2(g)} \longrightarrow 4NO_{(g)} + 6H_2O_{(g)}$ (2 marks)
- c) i. Define adiabatic change. (2 marks)
 - Two Moles of an ideal monatomic gas at 300k are compressed adiabatically to one quarter of the original volume. What is the temperature of the gas after compression? (4 marks)
- d) i. Explain the factors that affect chemical reactions (5 marks)
 - ii. Consider the reaction $4PH_3 \longrightarrow P4H_{(g)} + 6H_2O_{(g)}$ at a particular point during the reaction, molecular hydrogen is being formed at the rate 0.168m/s
 - iii. At what rate is P₄ being formed (3 marks)
 - iv. At what rate is PH₃ being consumed (2 marks)
- e) i. Define isothermal change. (1 mark)
 - ii. 0.1 mole of an ideal gas is expanded isothermally at a temperature of 273k from 3dm³ to 5dm³. Determine the energy (q) absorbed from the surrounding.

(4 marks)

SECTION B: (ANSWER ANY 2 (TWO) QUESTIONS)

QUESTION TWO

a) The gas reaction of NO with H_2 at 1280 °C is

$$2NO_{(g)} + 2H_{2(g)} \longrightarrow N_{2(g)} + 2H_2O_{(g)}$$

From the table below determine.

EXP	[NO] ₀ (M)	[H2]0(M)	Initial Rate M/Min
1	5.0 x 10 ⁻³	2 x 10 ⁻³	1.3 x 10 ⁻⁵
2	1.0 x 10 ⁻²	2 x 10 ⁻³	5 x 10 ⁻⁵
3	1.0 x 10 ⁻²	4 x 10 ⁻³	1 x 10 ⁻⁴
i. Rat	e Law.		(2 mark

- ii. Rate constant. (3 marks)
- Overall order of the reaction. iii.
- Rate of reaction when [NO] is 4.8×10^{-3} M and [H₂] = 6.2×10^{-3} M. iv. (3 marks)

For the following reaction, Rate = $K[A]^2$ and $K = 1.3 \times 10^{-2} M^{-1} S^{-1}$ b)

 $A + B \longrightarrow 2C$

Use this information to fill in the missing table entries. (7 marks)

Exp	[A] ₀ M	[B] ₀ M	Initial Rate M/Min
1	0.013	0.25	2.2 x 10 ⁻⁶
2	0.026	0.25	
3		0.5	2.2 x 10 ⁻⁶

- c) Name three major orders of chemical reactions.
 - i. State Hess's law of constant heat summation

(3 marks)

(2 marks)

(2 marks)

QUESTION THREE

a)	Calcu	ulate the enthalpy of the reaction	(4 marks)
	$C_2H_{4(g)} + H_{2(g)} + C_2H_{6(g)}$		
	At 29	98K from the following data.	
		i. $C_2H_{4(g)} + 3O_{2(g)} \longrightarrow 2CO_{2(g)} + 2H_2O_{(g)}$	$\Delta H = -1395 KJ$
		ii. $C_2H_{6(g)} + \frac{7}{2}O_{2(g)} \longrightarrow 2CO_{2(g)} + 3H_2O_{(g)}$	$\Delta H = -1550 KJ$
		iii. $H_{2(g)} + \frac{1}{2}O_{2(g)} \longrightarrow H_2O_{(g)}$	$\Delta H = -243 KJ$
b)	i.	Derive the Kirchoff's equation	(5 marks)
	ii.	For the reaction	

 $N_{2(g)} + 3H_{2(g)} \longrightarrow 2NH_{3(g)}$

The value of ΔH° 298 is -92.29kj at 25°c. The molar heat capacities at constant pressure of Nitrogen, hydrogen and ammonia are given as:

$$CH_2 = (29.038 - 0.0836 \text{ x } 10^{-3}\text{T} + 20.097 \text{ X } 10^{-7}\text{T}^2) \text{ JK}^{-1}$$

 $CN_2 = (26.957 + 5.906 \text{ x } 10^{-3}\text{T} - 3.373 \text{ X } 10^{-7}\text{T}^2) \text{ JK}^{-1}$

$$CNH_3 = (25.870 + 32.968 \times 10^{-3} \text{T} - 30.430 \times 10^{-7} \text{T}^2) \text{ JK}^{-1}$$

Calculate the standard enthalpy of reaction at 125°c. (5 marks)

c) When one mole of liquid benzene was completely burnt in oxygen to form liquid water and CO₂ gas $\Delta H = -3250$ kj at 298k. Calculate the enthalpy of reaction at constant volume at the same temperature. (4 marks)

QUESTION FOUR

4.

a) The decomposition of hydrogen peroxide is 1st Order

 $2H_2O_{2(aq)} \longrightarrow \qquad 2H_2O_{(L)} + O_{2(g)}$

The K is $1.8 \times 10^5 \text{ s}^{-1}$ at 20°c. If the starting concentration of H₂O₂ is 0.75M determine.

- i. The concentration of H_2O_2 remaining after 2hrs 30mins. (5 marks)
- ii. How long will it take for H_2O_2 concentration to drop to 0.1 M. (5 marks)
- b) Define the term half-life.

(2 marks)

- i. The decomposition of Ethane to Methyl radicals is a 1^{st} Order reaction with rate constant of 5.36 x 10^{-4} s⁻¹ at 700°c. Calculate the half-life of the reactions in seconds. (5 marks)
- ii. State the methods of determining rate law from experimental data. (3 marks)

QUESTION FIVE

- a) Define entropy of a system. (1 mark)
 - i. Calculate the entropy change for the reaction. (5 marks)

 $2C(g) + 2H_{2(g)} \longrightarrow 2C_2H_{4(g)}$

Given the following standard entropies at 25°c in units JK⁻ mole⁻¹

$C_{(graphite)}$	5.7
H_2	131.2
C_2H_4	221.0

- ii. One mole of an ideal monoatomic gas at standard temperature and pressure was heated at constant volume to a temperature of 353k. Determine the change in entropy. (4 marks)
- b) The enthalpy of transmission from rhombic to monoclinic Sulphur at the transition temperature of 95.6°c is 0.361 KJ/mole. Determine the entropy of transition. (4 marks)
- c) 2 moles of an ideal gas at 10 atmospheres and 23°c are expanded isothermally to a pressure of 1 atmosphere. Determine the work done. (4 marks)
- d) Differentiate between extensive properties and intensive properties. (2 marks)

QUESTION SIX

a) The decomposition of N_2O_s in the gas phase was studied at constant temperature.

 $2N_2O_{5(aq)} \longrightarrow 4NO_{2(g)} + O_{2(g)}$

The following results were collected.

[N2O5] Mol/L	Time
0.1000	0
0.0707	50
0.0500	100
0.0250	200
0.0125	300
0.00625	400

i. Using the data above verify that the rate is First Order in (N_2O_5) . (8 marks)

(4 marks)

(4 marks)

ii. Calculate the value of the rate constant where the rate.

 $= -d [N_2O_5]/dt$

The gas phase reaction of chlorine with chloroform is described by the equation.

 $Cl_{2(g)} + CHCl_{3(g)} \longrightarrow HCL_{(g)} + CCl_{4(g)}$

The rate law determined from experiment has a non-integer order.

Rate = $K[Cl_2]^1/_2[CHCl_3]$

A proposed mechanism for reaction follows: -

ki

$$Cl_{2(g)} \xrightarrow{K^{-1}} 2Cl_{(g)}$$

 K^{-1}
 $Cl_{(g)} + CHCl_{3(g)} \longrightarrow HCl_{(g)} + CCl_{3(g)}$
 $CCl_3 + Cl_{(g)} \longrightarrow CCl_4$
Is this an acceptable mechanism for the reaction? (4 marks)

c) Explain Collision Theory.