MACHAKOS UNIVERSITY

University Examinations 2019/2020 Academic Year
SCHOOL OF PURE AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS AND STATISTICS
\qquad .YEAR SEMESTER SPECIAL /SUPPLEMENTARY EXAMINATION FOR

BACHELOR OF SCIENCE IN COMPUTER SCIENCE

CSO 108: DISCRETE MATHEMATICS
DATE:
TIME:

INSTRUCTIONS

Answer ALL the questions in Section A and ANY THREE Questions in Section B

SECTION A

QUESTION ONE (30 MARKS) (COMPULSORY)
a) Define the following terms.
i. A graph
ii. trail
iii. Set
iv. Proposition
v. A subset
b) Find the power set of the set $A=\{1,2,3,4\}$.
c) Construct all the unlabeled graphs with 4 vertices
d) Construct the truth table for the disjunction of two proposition
e) In how many distinguishable ways can the product $Z^{7} X^{8} Y^{7} T^{6}$ be arranged without using exponents.
f) Given $A=\left((a b c)^{\prime} c\right)^{\prime}\left(a^{\prime}+c\right)\left(b^{\prime}+a c^{\prime}\right)^{\prime}$ express it as a sum of product expression.
g) Prove that if a bipartite graph has a cycle then all its cycles are of even length.

QUESTION TWO (20 MARKS)

a) Construct the logic circuit for the following output $Y=\left(X Y+Z Y^{\prime}\right)^{\prime}+\left(X^{\prime}+Z Y\right)^{\prime}$
b) Show that D_{210} (where D_{210} are divisors of 210) is a Boolean algebra
i) Find the atoms
ii) Find the subalgebra
iii) Construct the lattice diagram
c) \quad Given that $=00111001 \quad Y=11100011 Z=00110010 T=01011011$. Find

$$
\begin{equation*}
A=X \cdot Y \cdot Z . T+T Z \tag{5marks}
\end{equation*}
$$

QUESTION THREE (20 MARKS)

a) Given that a and b are rational with $\mathrm{b} \neq 0$ and s is an irrational number such that $a-b s=t$. Show that t is irrational hence show that $\frac{-1+\sqrt{3}}{1+\sqrt{3}}$ is irrational
b) Show that $\sqrt{5}$ is irrational
c) Proof that set of all even natural numbers is countable.
d) Suppose two boys say Fred and Sum are playing a Football tournament such that the first person to win two games in a row or who wins a total of three games wins the tournament. Construct a rooted tree to illustrate the above. Find the number of ways the tournament can be won.

QUESTION FOUR (20 MARKS)

a) Prove that if G is a connected planar graph with P vertices and q edges. Where $p \geq 3$. then $q \leq 3 p-6$.
b) Construct the Incidency matrix for the following graph.

c) Find the shortest path from A to Z for the map shown below

d) Prove that if M is a map with V vertices, E edges and R regions and K components. Then

$$
V-E+R=K+1
$$

QUESTION FIVE (20 MARKS)

a) Let $U=\{i, j, k, l, m, n, o, p, q, r, s, t, u\}, \quad A=\{i, k, l, m, q\} \quad B=\{j, k, q, r\}$ $C=\{j, k, m, o\}$ and $D=\{j, o, p\}$.

Determine the set
i) $A \cup B$
ii) $\quad A \cap C$
iii) $(A \cup B) \cap C^{c}$
iv) $(C \cap A) \cup D$
v)
b) Let $A=\{s, t\}$ and $B=\{1,4,6\}$ determine the set $(A \times B) X B$
c) A man who works five days a week can travel to work on foot, by bicycle or by bus. In how many ways can he arrange a week's travelling to work?
d) Show that $] p \vee q$ and $p \rightarrow q$ are logically equivalent

