

DATE:

TIME:

INSTRUCTIONS

Answer <u>ALL</u> the questions in Section A and <u>ANY THREE</u> Questions in Section B

SECTION A

QUESTION ONE (30 MARKS) (COMPULSORY)

a)	Define the following terms.				
	i.	A graph			
	ii.	trail			
	iii.	Set			
	iv.	Proposition			
	v.	A subset	(5 marks)		
b)	Find the power set of the set $A = \{1,2,3,4\}$. (3 marks)				
c)	Construct all the unlabeled graphs with 4 vertices (5 marks)				
d)	Cons	Construct the truth table for the disjunction of two proposition (4 marks)			
e)	In how many distinguishable ways can the product $Z^7 X^8 Y^7 T^6$ be arranged without using				
	expoi	nents.	(3 marks)		
f)	Given $A = ((abc)'c)'(a'+c)(b'+ac')'$ express it as a sum of product expression.				
			(5 marks)		
g)	Prove	e that if a bipartite graph has a cycle then all its cycles are of even length.	(5 marks)		

QUESTION TWO (20 MARKS)

a) Construct the logic circuit for the following output Y = (XY + ZY')' + (X' + ZY)'

(5 marks)

b) Show that D_{210} (where D_{210} are divisors of 210) is a Boolean algebra

i)	Find the atoms	(3 marks)

- ii) Find the subalgebra (3 marks)
- iii) Construct the lattice diagram (4 marks)

c) Given that = 00111001 Y = 11100011 Z = 00110010 T = 01011011. Find

$$A = X.Y.Z.T + TZ$$
(5 marks)

QUESTION THREE (20 MARKS)

a) Given that a and b are rational with $b \neq 0$ and s is an irrational number such that a - bs = t. Show that t is irrational hence show that $\frac{-1+\sqrt{3}}{1+\sqrt{3}}$ is irrational (6 marks)

- b) Show that $\sqrt{5}$ is irrational (5 marks)
- c) Proof that set of all even natural numbers is countable. (5 marks)
- d) Suppose two boys say Fred and Sum are playing a Football tournament such that the first person to win two games in a row or who wins a total of three games wins the tournament. Construct a rooted tree to illustrate the above. Find the number of ways the tournament can be won.

QUESTION FOUR (20 MARKS)

- a) Prove that if G is a connected planar graph with P vertices and q edges. Where $p \ge 3$. then $q \le 3p - 6$. (5 marks)
- b) Construct the Incidency matrix for the following graph. (5 marks)

d) Prove that if M is a map with V vertices, E edges and R regions and K components. Then V - E + R = K + 1. (5 marks)

QUESTION FIVE (20 MARKS)

a)	Let $U = \{i, j, k, l, m, n, o, p, q, r, s, t, u\}$, $A = \{i, k, l, m, q\}$ $B = \{j, k, q, r\}$			
	$C = \{j, k, m, o\} and D = \{j, o, p\}.$			
	Determine the set			
	i) $A \cup B$			
	ii) $A \cap C$			
	iii) $(A \cup B) \cap C^c$			
	iv) $(C \cap A) \cup D$			
	v) (8	3 marks)		
b)	Let $A = \{s, t\}$ and $B = \{1, 4, 6\}$ determine the set			
	$(A \times B) X B$			
c)	A man who works five days a week can travel to work on foot, by bicycle or by bus. In how			
	many ways can he arrange a week's travelling to work? (
d)	Show that $]p \lor q$ and $p \to q$ are logically equivalent (

(5 marks)