

MACHAKOS UNIVERSITY

University Examinations 2019/2020 academic Year

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF BIOLOGICAL SCIENCES

FIRST YEAR SPECIAL/SUPPLEMENTARY EXAMINATION FOR

BACHELOR OF SCIENCE IN AGRICULTURAL EDUCATION AND EXTENSION

SBC 120: INTRODUCTION TO GENETICS

DATE: 21/1/2021 TIME: 2.00-4.00 PM

INSTRUCTIONS

- 1. Answer Question 1 (compulsory) and **any two** questions in Section B.
- 2. Use clean well labelled diagrams wherever appropriate.

SECTION A

QUESTION ONE (30 MARKS)

a)	Explain various types of genetic linkages		(3 marks)
b)	Explain the factors that affect recombibation frequency		(3 marks)
c)	using a diagram explain three zygote condition that may results due abnomal chromosomal		
	numbers.		(3 marks)
d)	Explain with details human disorders due to chromosomal mutations		(3 marks)
e)	Describe three importances of genetic variation in both plants and animals		(3 marks)
f)	Define the following terms		(3 marks)
	i. Founders Effect		
	ii. Genetic Effect		
	iii. Bottleneck Effec	et	
g)	Explain the isolation mechanisms that in speciation.		(3 marks)
h)	Explain types of Extranuclear inheritance ((3 marks)
i)	Elaborate on the importance of cell division in living things.		(3 marks)
j)	Explain the natural selection pressures various organisms must observe to avoid evolution		
			(3 marks)

SECTION B

QUESTION TWO (20 MARKS)

A researcher and a maize breeder at KARI is involved in developing a superior variety of maize. He recently developed a trihybrid maize for yellow seed, thick prop roots and a resistance to stem fungal attack in the various crosses that he conducted he noted the following

- 1. When maize of a true breeding for white seed (yy) and a thick prop root (RR) was pollinated by Maize that was atrue breeding for yellow seed (YY) and slender Prop(rr) root, the progeny were all yellow seeds and thick Prop roots.
- 2. When Maize variety that was a true breeding for suspectibility to stem fungal attack (ff) was pollinated by one that was a true breeding for resistance to stem Fungal attack the entire progeny were resistant.

In a new cross the trihybrid (above) was pollinated by a Maize variety that of White seed and is a hybrid for thick prop root and resistance to stem fungal attack.

From the above information

- a) List the dorminant and recessive genotypes for all the traits crossed. (2 marks)
- b) What are the genotypes for the trihybrid maize. (3 marks)
- c) What are the genotypes for the pollinator Maize in the new cross. (5 marks)
- d) With a punnet Squere show the genotypes of the progeny from a new cross. (10 marks)

QUESTION THREE (20 MARKS)

Discuss Mendels principles and non mendels principles of inheritance

QUESTION FOUR (20 MARKS)

- a) Discuss ways through which new species can evolve (10 marks)
- b) Explain five conditions required in order for a population to maintain the Hardy- weinberg equilibrium (10 marks)

QUESTION FIVE (20 MARKS)

Discuss meiosis