

MACHAKOS UNIVERSITY

University Examinations 2019/2020

SCHOOL OF PURE AND APPLIED SCIENCES DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTUARIAL SCIENCE FIRST YEAR SECOND SEMESTER EXAMINATION FOR DIPLOMA IN MECHANICAL ENGINEERING (TVET)

2502/103/M: MATHEMATICS

DATE: 24/3/2020

TIME: 11.30-2.300 PM

INSTRUCTIONS: The paper consists of EIGHT questions. Answer any FIVE questions. ALL questions carry equal marks.

Show all your working

i.
$$\frac{27x^3y^{-4}z^2}{8x^{-4}y^{-6}z}$$
 (4 marks)

ii.
$$\frac{\log_{27} - \frac{1}{2}\log_{99}}{\log_{81} + \frac{1}{2}\log_{99}}$$
 (4 marks)

iii.
$$\sqrt[3]{27a^6}b^9 \div \sqrt{\frac{1}{36}}a^3b^5 \times \sqrt{a^4}b^6$$
 (6 marks)

b) Determine the values of p, q, and r such that $4x^2 - 3x + 12 = p(x + q)^2 + r$ (6 marks)

- 2. Solve the equations
 - a) i) $2(13.5^{x+2}) = 7^{x+4}$
 - ii) $2\log_3 x \log_3(x-1) = \log_3(x-2)$ (10 marks)

b)
$$\frac{x}{x+2} + \frac{3}{x+3} = 2$$
 (3 marks)

c) $sin 2\theta + sin 4\theta$ $sin 6\theta = 0$ for values of θ between 0^0 and 360^0 . (7 marks)

3. a) Prove the identities

i.
$$\frac{\sin\theta}{1+\cos\theta} + \frac{1+\cos\theta}{\sin\theta} = \frac{2}{\sin\theta}$$
 (5 marks)

		ii.	$\sinh 3x = 3\sinh x + 4\sinh^3 x$	(5 marks)	
		iii.	$\cos x + \cos(x + 120^0) + \cos(x + 240^0) = 0$	(6 marks)	
	b)	Expre	ess $Z = (2-7j)$ in polar form	(4 marks)	
4.	Solve	e			
	a)	3cosh	$x + 2\sinh x = 14.31$ correct to 4 decimal places	(6 marks)	
	b)	4cosh	$2x = 4 + \sinh 2x$ correct to 3 decimal places	(6 marks)	
c) $5x - 3y - 2z = 31$			3y - 2z = 31		
		2x + 6y + 3z = 4			
		4x + 2y - z = 30		(8 marks)	
5.	5. a) Find the value of tanA, when		he value of tanA, when $\tan(A-45^0) = \frac{1}{3}$ (5 marks)	
	b)	Given that $SinA = \frac{12}{13}$ and $Cos B = \frac{4}{5}$ where A is obtuse and B is acute, determine			
		values	values of ;		
		i)	Sin(A - B)		
		ii)	Tan(A + B)	(5 marks)	
	c)	c) Express in polar co-ordinates the position :			
		i.	$P_1(3 4)$		
		ii.	P ₂ (-5 -8)	(5 marks)	
	d) obtain the Cartesian equations of;		the Cartesian equations of;		
$r = 5(1 + 2\cos\theta)$		r = 5($1 + 2\cos\theta$)	(5 marks)	
6. a) Determine the value of P and C		Deter	mine the value of P and Q such that $4\cosh x - 5\sinh x = Pe^x + Q$	$2e^{-x}$ (5 marks)	
	b)	i)	Derive the identity $\sinh(x-y) = \sinh x \cosh y - \cosh x \sinh y$		
		ii) Use Osbornes rule to derive the identity for $\operatorname{sech}^2 x$ from the correspond		e corresponding	
			trigonometric identity.	(7 marks)	
	c)	Obtain	n the		
		i.	polar equation of the of the loci $x^2 + y^2 - 2x = 0$		
		ii.	cartesian equations of the loci $x = t^2 + 4$ and $y = t - 3$	(8 marks)	
7.	a)	Deter	mine the inverse of $f(x) = \frac{x+4}{2x-5}$	(4 marks)	
	b) Determine the polar equation of t		mine the polar equation of the parabola $x^2 = 4(1 + y)$	(4 marks)	
	c)	c) Convert			
		i.	$r = 3(1 + 2\cos\theta)$ to Cartesian form		
		ii.	$x^2 + y^2 = 7x$ to polar form	(8 marks)	
	d) S	Solve for x given $e^x - 1 = 2e^{-x}$		(4 marks)	

8. a) Simplify 3+2j+5(3-j)+j(3j-4) expressing the result in the polar form (6 marks)

b) Express
$$\frac{2+3j}{3+4j}$$
 in the form a + bj (3 marks)

c) Solve the equation
$$\frac{jx}{1+jy} = \frac{3x+jy}{x+3y}$$
 (5 marks)

d) Use Demoivre's theorem to show that $\sin^5\theta = \frac{1}{16}sin5\theta - 5sin3\theta + 10sin\theta$

(6 marks)