MACHAKOS UNIVERSITY

University Examinations 2019/2020
SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTUARIAL SCIENCE FIRST YEAR SECOND SEMESTER EXAMINATION FOR DIPLOMA IN BUILDING AND CIVIL ENGINEERING (TVET)
 2705/102: MATHEMATICS

DATE: 24/3/2020
TIME: 11.30-2.30 PM
INSTRUCTIONS:
The paper consists of SEVEN questions. Answer any FIVE questions.
ALL questions carry equal marks.
Show all your working

1. a) Simplify the expressions
i) $\frac{3 x^{2} y^{3}+2 x y^{2}}{6 x y}$
ii) $\frac{\log 625-\log 25+\frac{1}{2} \log 5}{\log 125+\log 625+-\frac{1}{2} \log 25}$
b) Solve the following equations

$$
\begin{array}{lll}
\text { i. } & \log 2 x^{3}-\log x=\log 16+\log x & (5 \text { marks }) \\
\text { ii. } & \frac{3}{x-2}=\frac{5}{3 x+4} & (3 \text { marks }) \\
\text { iii. } & \log (x-2)+\log (x+1)=2 \log (x+2) & (3 \text { marks }) \\
\text { iv. } & 3^{2 x-1}=5^{x+2} & (3 \text { marks }) \tag{3marks}
\end{array}
$$

2. a) Determine graphically the values of x and y which simultaneously satisfy the equations $y=2 x^{2}-3 x-4$

$$
\begin{equation*}
y=2-4 x \tag{6marks}
\end{equation*}
$$

b) Solve the equations
i. $3 \cos ^{2} \theta+10 \sin \theta=11$ for $0 \leq \theta \leq 360^{\circ}$
(6 marks)
ii. $2 \sec ^{2} \theta=3(3-\tan \theta)$ for $0 \leq \theta \leq 360^{\circ}$
3. a) Solve the simultaneous equations
$8 x-3 y=-39$
$7 x+6 y=9$
b) Given that $\operatorname{Sin} \mathrm{A}=\frac{12}{13}$ and $\operatorname{Cos} \mathrm{B}=\frac{4}{5}$ where A is obtuse and B is acute, determine the values of ;
i) $\quad \operatorname{Sin}(A-B)$
ii) $\quad \operatorname{Tan}(\mathrm{A}+\mathrm{B})$
(6 marks)
c) Prove the identities:
i) $\frac{1-\operatorname{Cos} \theta}{\operatorname{Sin} \theta}+\frac{\sin \theta}{1-\operatorname{Cos} \theta}=2 \operatorname{Cosec} \theta$
ii) $\quad \tan 3 \mathrm{x}=\frac{3 \tan x-\tan ^{3} x}{1-3 \tan ^{2} x}$
(8 marks)
4. a) Find the
i) Cartesian coordinates of the point whose polar coodinatesare (5,5.26rad)
ii) Polar coodinates of the point whose Cartesian coodinates are $(-5,-9)$
(10 marks)
b) The sum of the $4^{\text {th }}$ and $6^{\text {th }}$ term of the geometric series is 80 . If the product of the $3^{\text {rd }}$ and the $5^{\text {th }}$ term is 256 , determine
i. first term
ii. common ratio
iii. sum of the first eight terms
5. a) Express in polar co-ordinates the position :
i. $\quad P_{1}(34)$
ii. $\quad P_{2}(-5-8)$
b) obtain the Cartesian equations of;
i. $\quad \mathrm{r}=5(1+2 \cos \theta)$
ii. $r=a \tan \theta$
c) Find the cartesian equations of the loci;
i. $\quad \mathrm{x}=\mathrm{t}^{2}+4$ and $\mathrm{y}=\mathrm{t}-3$
ii. $x=5 \cos \theta$ and $y=4 \sin \theta$
(7 marks)
6. a) The second term of an arithmetical progression is 15 and the fifth term is 21 .

Determine the :
i. Common difference
ii. First term
iii. The sum of the first ten terms
(7 marks)
b) Find the difference between the sums of the first ten terms of the arithmetical progression whose first terms are 12 and 8 , and whose common differences are 2 and3 respectively.
c) Given the first, third and sixth terms of an arithmetical progression are in geometrical progression, find the common ratio of the geometric progression.
7. a) i) Find the sum of the integers between 1 and 100
ii) Determine the sum of the first six terms of the geometrical progression
$5+15+45+\ldots \ldots$.
b) A sum of Ksh 4000 is deposited in a bank account at a simple interest rate of 3% per annum. Determine, using AP's and GP's, the:
i. Amount after ten years;
ii. Number of years required for the amount in (i) to be realized at compound Interest rate of 2\% per annum

