MACHAKOS UNIVERSITY

University Examinations for 2019/2020 Academic Year
SCHOOL OF PURE AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS AND STATISTICS FIRST YEAR THIRD SEMESTER EXAMINATION FOR DIPLOMA IN BUILDING AND CIVIL ENGINEERING.

MATHEMATICS

DATE: 15/12/2020
TIME: 11.30-2.30 PM
INSTRUCTIONS
The paper consists of FIVE questions. Answer ALL.

ALL questions carry equal marks.

Show all your working

1. (a) Simplify (i) $\frac{\log 729-4 \log 3+2 \log 27}{\log 243-\log 27+\log 9}$ without using logarithm tables

$$
\text { (ii) } \frac{6 x^{2} y^{3}+2 x y^{2}}{6 x y}
$$

(b) Solve the equations
i. $\quad 8 x-3 y=-39$

$$
7 x+6 y=9
$$

ii. $\quad \frac{3}{x-2}=\frac{5}{3 x+4}$
iii. $\quad \log 2 x^{2}-\log x=\log 16+\log x$
(c) Make b the subject of the formulae: $\mathrm{a}=\frac{x-y}{\sqrt{(b d+c b)}}$
2. (a) Given that $\mathbf{A}=\mathrm{Pi}+\mathbf{b} \mathbf{j}-3 \mathbf{k}$ and $\mathbf{B}=4 \mathbf{i}+3 \mathbf{j}-\mathbf{k}$ where P is a constant. Determine the value of P such that vectors \mathbf{A} and \mathbf{B} are perpendicular to each other. (4 marks)
(b) Evaluate the middle term in the binomial expansion of $(2 x+3 y)^{8}$ and it's value when $\mathrm{x}=\frac{1}{3}$ and $\mathrm{y}=\frac{1}{2}$.
(c) The sum of the $4^{\text {th }}$ and $6^{\text {th }}$ terms of a geometric series is 80 . If the product of the $3^{\text {rd }}$ and $5^{\text {th }}$ term is 256 , determine;
i. first term
ii. common ratio
iii. sum of the first eight terms
3. (a) Prove the identity: $\frac{\sin \theta}{1+\cos \theta}+\frac{1+\cos \theta}{\sin \theta}=\frac{2}{\sin \theta}$
(b) The probability of a concrete mixer is $\frac{1}{4}$, dumper $\frac{1}{7}$ and hoist $\frac{1}{8}$ respectively.

Determine the probability that:
i. all machines breakdown;
ii. two machines breakdown.
(c) Table 1 shows the lengths in centimeters of 50 bars in a construction site.

Length (cm)	Frequency
$34-36$	2
$37-39$	6
$40-42$	12
$43-45$	14
$46-48$	10
$49-51$	5
$52-54$	1

Calculate
i. Mean
ii. Median
(d) Solve the equation $3 \cos ^{2} \theta+10 \sin \theta=11$
4. (a) Express in polar co-ordinates the position:
i. $\quad P_{1}(34)$
ii. $\quad P_{2}(-5-8)$
(b) obtain the Cartesian equations of;
i. $\quad \mathrm{x}=\mathrm{t}^{2}+4$ and $\mathrm{y}=\mathrm{t}-3$
ii. $\quad r=5(1+2 \cos \theta)$
(c) A ship sails from $\mathrm{A}\left(40^{\circ} \mathrm{N}, 50^{\circ} \mathrm{E}\right)$ to $\mathrm{B}\left(40^{\circ} \mathrm{N}, 70^{\circ} \mathrm{W}\right)$. Taking $\pi=3.14$ and the radius of the earth to be 6400 Km , calculate the distance from A to B giving the answer correct to five significant figures.
5. (a) Convert
i. $\quad 1101101$ to denary
ii. 204 to binary
(b) A minor segment is enclosed between a chord of length 14 cm and a circle of diameter 20 cm . determine the area of the segment.
(c) Two ordinary unbiased dice are thrown. Determine the probability that the:
i. sum of the two dice is 3 ;
ii. sum of the two dice exceeds 9;
iii. Two dice show the same number;
iv. Number on the two dice differ by more than 2 .

