MACHAKOS UNIVERSITY

University Examinations 2020/2021 Academic Year
SCHOOL OF PURE AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS AND STATISTICS
FIRST YEAR FIRST SEMESTER EXAMINATION FOR
BACHELOR OF ARTS (PUBLIC ADMINISTRATION)

APP 102: QUANTITATIVE TECHNIQUES FOR POLICY MAKERS

INSTRUCTIONS:

Answer Question One and Any Other Two Questions

QUESTION ONE (30 MARKS) (COMPULSORY)

a) Solve by factorization method $2 x^{2}-5 x-3=0$
b) Find a number such that 3 more than one half of the number is two thirds the number
c) Solve for x in $x^{2}-9 x+4=0$ (5 marks)
d) Compute the value of the following limit $\lim _{x \rightarrow 2}\left(3 x^{2}+5 x-9\right)$
e) Use the definition of derivatives to differentiate $f(x)=x^{2}$
f) Find a_{6} for an arithmetic sequence where $a_{1}=3 x-1$ and $d=2 x+6$

QUESTION TWO (20 MARKS)

a) Find the equation for the line that has a slope of $\frac{2}{3}$ and passes through (6,2) (4 marks)
b) Evaluate the indefinite integral defined by $\int\left(2 x^{2} 4 x+3\right) d x$
c) The fourth term of a geometric progression is 27 and the seventh term is 729. Find
i. The first term
ii. The common difference
d) Evaluate $\frac{\log 125-\log 25}{\log 25+\log 5}$

QUESTION THREE (20 MARKS)

a) A rectangular field has an area of $75 \mathrm{~m}^{2}$. The width of the field is 3 m longer than the length of the rectangle. What are the dimensions of the field?
b) Differentiate $f(t)=\frac{3 t+9}{2-t}$ with respect to t
c) Determine the points where the function below is not continuous
$h(t)=\frac{4 t+10}{t^{2}-2 t-15}$

QUESTION FOUR (20 MARKS)

a) The first term of an arithmetic sequence is equal to 6 and the common difference is equal to 3.
i. Find the formula of the $\mathrm{n}^{\text {th }}$ term
ii. Find the $50^{\text {th }}$ term
b) Given that the fourth and the eight terms of the arithmetic sequence are $\mathrm{a}_{4}=93$ and $\mathrm{a}_{8}=65$
i. Find the common differences d and the first term a (4 marks)
ii. Find the $\mathrm{n}^{\text {th }}$ term
c) Find S_{10} for $250,100,40,16, \ldots$.
d) Find the $9^{\text {th }}$ term of the sequence
$1, \sqrt{2}, 2, \ldots \ldots$

QUESTIONS FIVE (20 MARKS)

a) Use simplex method to maximize $z=3 x_{1}+2 x_{2}$ subject to the following;

$$
\begin{aligned}
& -x_{1}+2 x_{2} \leq 4 \\
& 3 x_{1}+2 x_{2} \leq 14 \\
& x_{1}-x_{2} \leq 3 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

b) Evaluate the indefinite integral defined by $\int\left(x^{4}+3 x+1\right) d x$

