

# Machakos University College 

ISO 9001:2008 Certified
(A Constituent College of Kenyatta University)
University Examinations for Semester II July 2014

DEPARTMENT OF MATHEMATICS AND STATISTICS DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

## Examination for Diploma in Civil Engineering (Module III) and

## Mathematics III and Surveying III

Date: 2014/07/21

## Instructions:

a. You require the following for this examination

- Answer booklet
- Scientific calculator
b. Fill in all personal details as required on the answer booklet provided
c. This paper has two sections A and B. Answer a total of Five questions choosing at least Two questions from each section. The fifth question can be chosen from either section, all the questions carry equal marks.


## SECTION A: MATHEMATICS III

Answer at least two questions from this section
1.a) Distinguish between the following terms as used in Statistics and Probability:
(i) Compound and Disjoint events
(ii) Independent and Mutually exclusive events
b) Maina goes for a malaria test that is known to be $90 \%$ accurate after her single mosquito bite but it is also known to give false-positive results at $50 \%$ of the time. If the probability of transmitting sporozoites for any single bite by infected Anopheles mosquito is approximately $15 \%$. What is the probability that Maina has malaria given his results turned to be positive?
c) The probability that a contractor will get a plumbing contract is $2 / 3$ and the probability that he will not get the electric contract is $5 / 9$.If the probability of getting at least one contract is $4 / 5$, what is the probability that he will get both?
(20 Marks)
2. (a) Three machines are designed to process same product but at different rates. The first machine, $\mathrm{B}_{1}$, process 40 per cent, the second machine, $\mathrm{B}_{2}$, processes 35 per cent and the third machine, $\mathrm{B}_{3}$, processes 25 per cent of the products. The first machine has a defective rate of 0.04 , the second has a defective rate of 0.06 and the third has a defective rate of 0.03 . A product selected at random from a day's output was found to be defective. What is the probability that the product was processed by the first, second, or third machine, respectively.
(b) A bag contains 8 red and 5 white balls. The successive drawings of 3 balls are made such that
(i) balls are replaced before the second trial.
(ii) The balls are not replaced before the second trial.

Find the probability that the first drawing will give 3 white and the second 3 red balls in each case.
(c) Given
$\mathrm{U}=\left\{\frac{x}{x}\right.$ is positive inte ger $\}$
$A=\{1,3,5\}$
$B=\{3,4,5,6\}$ Determine (i) AUB (ii) B-A
(20 Marks)
3.(a) A candidate is selected for interview of construction trainees for 3 companies. For the first company there are 12 candidates, for the second there are 15 candidates and for the third, there are 10 candidates. What are the chances of him getting a job at least in one of the company?
(b)Two computers A and B are to be marketed. A salesman who is assigned the job of finding customers for them has $60 \%$ and $40 \%$ chances respectively of succeeding in case of computer A and B. The computers can be sold independently. Given that he was able to sell at least one computer, what is the probability that computer A has been sold?
(c) Jane's chance of passing a statistics exam is 0.9 if a question on regression appears, otherwise her chance of passing is 0.7 . If there is a 0.6 chance that, the question appears. What is the probability that she passes the exam?
(20 Marks)
4. (a) Use the forward Gregory-Newton interpolation formula with the table below to compute
i. $\quad \mathrm{f}(-3.7)$
ii. $\mathrm{f}(6.5)$

$$
\begin{aligned}
& x: \quad-4-20_{1} \\
& f(x):-44 \quad 6 \quad 81060206496
\end{aligned}
$$

(b) Given that the given approximation of root of the equation $x^{3}+2 x^{2}-5 x=1$ is $x_{0}$ apply Newton- Raphson method to show that a better approximation is

$$
4_{n+1}=\frac{2 x^{3}+2 x^{2}+1}{3 x^{2}+4 x-5}
$$

Hence calculate the root of the equation starting $4_{0}=1.4$ correct to $2 \mathrm{dp} \quad$ (10 Marks)

## SECTION B - SURVEYING III

This section consists of four questions. Answer at least two questions from this section.
5. a) Define the following terms
i) A prismoid
ii) Prismoidal correction
b) Five cross-sectional areas $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}$ and $\mathrm{A}_{5}$ were taken at right angles to a longitudinal embankment formation and the interval between successive cross-sections ' $d$ ' was kept constant. Derive;
i) The prismoidal formula for calculating the volume of fill between cross-sectional areas $\mathrm{A}_{1}$ and $\mathrm{A}_{5}$
ii) The formula for the prismoidal excess
6. a) Explain the process of setting out as applied to in surveying
b) A section of a sewer 60 m long is to be laid between two manholes A and B. the invert of manhole A is 30.02 m . The gradient between A and B is to be $1: 100$ falling from A to B. if a 3.75 m traveler is available and the ground levels at A and B are 32.90 m and 31.95 m respectively. Calculate;
i) Reduced level of sight rail at A
ii) Invert reduced level at B
iii) Reduced level of sight rail at B
iv) The staff readings necessary to fix positions of sight rails at A and B if a reduced level setup nearby has a height of collimation of 34.845 m .
v) Depths of excavation at A and B

7 a) Define the following terms as used in Mass Haul Diagrams.
i) Haul
ii) Free haul distance
iii) Over haul volume
iv) Overhaul
b) The formation width of two cross-sections of a road 50 m apart is 10 m , and the side slope for cutting is $1: 1$ and for filling is $2: 1$. The transverse slope of the ground is 1 in 5 . The depths of excavations at the centerline of the two cross-sections are 0.50 m and 0.70 m respectively. Find the volume of cutting and filling using the average end areas formula.
Apply prismoidal corrections for the computed areas
8 a) The areas between the consecutive contours measured with the help of a plannimeter were recorded
as follows;

| Contour $(\mathrm{m})$ | Area $\left(\mathrm{m}^{2}\right)$ |
| :--- | :---: |
| 200 | 3850 |
| 195 | 3450 |
| 190 | 2600 |
| 185 | 800 |
| 180 | 450 |

Estimate the capacity of the reservoir taking datum level at 180 m using;
i) Prismoidal formula
ii) Trapezoidal formula
b) An embankment is made on a ground having a transverse slope of 1 in 10 . The width of the bank at the formation level is 10 m . The side slope of the embankment is $2: 1$. The heights of the bank of the centre-line of the formation level are $3 \mathrm{~m}, 3.5 \mathrm{~m}$, and 4 m at three consecutive sections spaced at 15 m apart. Find;
i) The side widths
ii) The cross-sectional areas
iii) The volume of earthwork assuming the centerline to be straight using the prismoidal rule
(14 marks)

