

MACHAKOS UNIVERSITY

University Examinations 2020/2021 Academic Year

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

FIRST YEAR SPECIAL /SUPPLEMENTARY EXAMINATION FOR

BACHELOR OF SCIENCE IN STATISTICS AND PROGRAMMING

BACHELOR OF SCIENCE IN ACTUARIAL SCIENCE

SST 103: LINEAR ALGEBRA

DATE: 29/3/2021 TIME: 2.00-4.00 PM

INSTRUCTIONS

Answer Question ONE and any other TWO Questions.

QUESTION ONE 30 Marks (Compulsory)

- a) Find the angle between the following vectors 4i + 4j + 6k and i + 2j + 2k (4 marks)
- b) Solve the homogenous system by Gauss elimination method

$$2x - 4y + 6z = 20$$

$$3x - 6y + z = 22$$

$$-2x + 5y - 9z = 18 \tag{5}$$

marks)

c) If
$$\begin{vmatrix} 4y & 20 \\ 4y & 8y + 4 \end{vmatrix} = 8$$
 find y (3)

marks)

Calculate the cross product of the vectors
$$\vec{v} = (2, 2, 3)$$
 and $\vec{v} = (-1, 1, 3)$. (3 marks)

d) Find the inverse of the following matrix

$$\begin{bmatrix} 1 & 3 & 2 \\ 2 & 4 & 2 \\ 1 & 2 & -1 \end{bmatrix} \tag{4}$$

marks)

- e) Show that the vector (2,-6,3) is a linear combination of the (3,-5,4) and (1,-2,-1)
- f) Calculate the x and y values for the vector (x, y, 1) that is orthogonal to the vectors (3, 2, 0) and (2, 1, -1). (4 marks)
- g) Determine if (1,2,2,1), (2,3,4,1) and (3,8,7,5) is linearly dependent (4 marks)
- h) Find the dot product of the following vectors (3,4,-1) and (4,6,1) (3 marks)

QUESTION TWO (20 MARKS)

- a) Let $T: \mathbb{R}^2 \to \mathbb{R}$ be defined by T(x, y) = x + y. Is T a linear map? (7 marks)
- b) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T(x, y) = \{x + y, x\}$. Find the kernel of T (5 marks)
- c) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear mapping defined by T(x, y, z) = (x + 2y z, y + z, x + y + z). Find the basis and dimension of
 - i. Image of T
 - ii. Kernel of T (8 marks)

QUESTION THREE (20 MARKS)

- a) Find the equation of the plane passing through the point (3, -1, 7) and perpendicular to the vector n = (4, 2, -5) (5 marks)
- b) Find the distance from the origin to the plane 2x + 3y z = 2 (5 marks)
- Find the parametric equations for the line of intersection of the plane 3x + 2y 4z 6 = 0 and x 3y 2z 4 = 0 (5 marks)
- d) Find the distance D between the point (1, -4, -3) and the plane 2x 3y + 6z = -1 (5 marks)

QUESTION FOUR (20 MARKS)

- a) Show that $w = \{(x, y, z) | x + y + z = 0\}$ is a subspace of \mathbb{R}^3 (5 marks)
- **b**) Show that the vectors u=(1,-1,0) v=(1,3,-1) and w=(5,3,-2) are linearly dependent. (5 marks)
- c) Find the rank of the following matrix

$$\begin{bmatrix} 2 & 4 & 3 \\ 3 & -3 & 2 \\ 2 & 0 & 3 \end{bmatrix}$$
 (5 marks)

d) Solve by crammer's Rule

$$x - 2y + 3z = 10$$

 $3x - 6y + z = 22$
 $-2x + 5y - 2z = -18$ (5 marks)

QUESTION FIVE (20 MARKS)

- a) Define a vector space (6 marks)
- b) Show that $W = \{(x, y) / x = 2y\}$ is a subspace for \mathbb{R}^2 . (4 marks)
- c) Prove that the diagonals of a rhombus are perpendicular. (5 marks)
- d) Find the parametric and the symmetric equations of the line passing through the point (2, 3, -4) and parallel to the vector (3, 5, -6) (5 marks)