MACHAKOS UNIVERSITY

University Examinations 2019/2020 Academic Year
SCHOOL OF PURE AND APPLIED SCIENCES
SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE ENVIROMENT

ESU 302: STATISTICS

Date
Time
INSTRUCTION: Answer Question ONE which is compulsory and any other TWO Questions Question one ($\mathbf{3 0}$ marks)
a) Differentiate the following terms as they apply in scientific research
i) Sample and a population
ii) Descriptive and inferential statistics
iii) Sampling unit and Sample frame (6 marks)
b) (i) Determine the regression equation of Y on X given that

$$
\begin{equation*}
\sum x y=205, \sum x^{2}=2150, \bar{x}=35 \text { and } \bar{y}=7 . \tag{5marks}
\end{equation*}
$$

(ii) Highlight three assumptions for regression analysis
c) In a class sample of 12 students, the instructor wanted to establish whether gender influenced their performance. Given below are their test scores per gender, at $\alpha=5 \%$

Males	10	8	12	15	6	-	-	-
Females	8	12	13	9	3	8	11	3

i. Determine whether gender influence the class performance significantly
ii. Test the hypothesis that the mean score for females is $14.9 \quad$ (9 marks)
d) Highlight four limitations of statistics in research
e) Compute the standard error of the mean given the data $5,7,9,7,2$.

Question Two (20 marks)

a) The data below is a summary of the slim possible participants weights in kilograms before and after the season.

Participant	A	B	C	D	E	F	G	H
Weight Before	85	124	172	123	111	139	99	77
Weight after	105	160	175	143	156	127	95	100

Test the hypothesis that on average the exercise did not result to any significant weight loss at 10% significance level
b) Below was the daily harvest of a tropical plant during a particular week in the year 2017.

Harvested fruits	$11-20$	$21-30$	$31-40$	$41-50$	$51-60$
Frequency	3	6	11	3	2

Determine;
i. Average harvest per day
ii. Median
iii. Mode and
iv. Standard deviation.

Question Three (20 marks)

a) The information relates health records from County XYZ randomly selected

Gender	Males	Females
Average lifespan	50	58
Standard deviation	12	9
Sample size	100	150

Determine;
i) The gender with the higher dispersion lifespan
ii) The combined standard deviation
iii) State the hypotheses for testing life expectancy for the two genders
iv) Do the life span differ significantly for the two gender (use α-level $=1 \%$).
(12 marks)
a) Using the data below determine if there was any correlation between the sodium concentration and Opuntia area coverage.
(8 marks)

Sodium conc.	1.75	5.83	5.33	4.67	7.17	5.50	9.33	6.83	7.50	10.80	11.30	11.40
Opuntia area	14.2	30.1	71.2	77.5	75.9	121.8	132.1	159.0	181.9	184.3	194.6	219.1

Question Four (20 marks)

a) Differentiate between a discrete random variable and a continuous random variable
a) The table below shows the scores of eight interviewees on aptitude and subject matter knowledge

Interviewee	A	B	C	D	E	F	G	H
Aptitude test score	15	20	28	12	40	60	20	80
Subject matter score	40	30	50	30	20	10	30	60

Compute the rank coefficient of correlation
(8 marks)

Question Five (20 marks)

a) Discuss four functions of statistics in research
b) The lecturer presumed that the average class attendance was 65 students. He did call register for 10 days and observed following: 66, 65, 69, 70, 69, 71, 70, 63, 64 and 68. The t-test output was as given

The sample t-test output, for the test value=65							
	t	df	Sig. $(2-$ tailed	Mean difference	95% CI of the difference		
			Lower	Upper			
Attendance	2.825	9	0.020	2.500	0.4979	4.5021	

i. State the hypothesis for the above scenario
ii. Based on the t-value and the sig.(2-tailed) value make statistical conclusion
iii. Interpret the 95% CI lower and upper difference values (6 marks)
(c) The contents of seven similar containers of sulfuric acid are 9.8, 10.2, 10.4, 9.8, 10.0, 10.2 and 9.6 liters. Find a 95% confidence interval for the mean of all such containers, assuming an approximate normal distribution.

