

DATE: 25/3/2021

TIME: 2.00-4.00 PM

INSTRUCTIONS

This paper contains FIVE questions

Question ONE is compulsory and carries 30 Marks while the rest carries 20 Marks each. Attempt any two.

QUESTIONS ONE (30 MARKS)

a)	What are the three types of CAD application software? Give examples	(3 marks)				
b)	Describe 3 constituents of a CAD system	(6 marks)				
c)	Describe the main elements in a CNC system					
d)	What are the merits and demerits of CAD/CAM?	(4 marks)				
e)	What do you understand by input and output devices as far as CAI	D hardware				
	systems are concerned?	(2				
	marks)					
f)	Define an industrial robot	(2 marks)				
g)	Name three most widely accepted CAD data exchange formats and d	iscuss their				
	importance	(3 marks)				
h)	Discuss any four types of engineering analysis that can be conducted with	nin CAD				
	environment	(4 marks)				
i)	State three applications of the computer in direct manufacturing of	control and				
	monitoring	(3 marks)				

QUESTIONS TWO

a)	Define Finite Element Analysis	(2 marks)
b)	Finite element analysis (FEA) finds application in a wide range of	engineering
	problems/areas. State six such problems/areas	(3 marks)
c)	Describe in detail, the three stages in Finite Element Analysis	(6 marks)
d)	With the aid of sketches, name two 3D elements available in comm	nercial FEA
	softwares	(2 marks)
e)	What is the importance of carrying out analysis of a mechanical part or	assembly in
	the design phase?	(3 marks)
f)	Describe the four main inputs into a finite element program	(4 marks)

QUESTIONS THREE

- a) A line with end points A (2, 3, 2) and B (10, 12, 8) is rotated 60° counter clockwise about the z-axis, then translated by a vector [5 4 8]^T and finally scaled by (S_x, S_y, S_z). If the final coordinates of point A are A' (6.8, 14.46, 20.0) determine the scaling factors and hence the coordinates of point B'. (8 marks)
- b) Describe the following types of 3-D modelling techniques. Cite an example of its application, advantages and disadvantages for each.
 - i. Surface modelling (6 marks)
 - ii. Solid Modelling (6 marks)

QUESTIONS FOUR

- a) Define the term "Numerical Control" (2 marks)
- b) With the aid of sketches, differentiate between absolute and incremental positioning in CNC programming (4 marks)
- c) Figure Q4(c) is an illustration of a billet that is to be milled on a three axis CNC machine. Using the program table format provided in Table 1, write a program that can be used to effectively mill the profile. (14 marks)

Figure Q4(c)

Spindle speed 1500 rpm for milling and 1200rpm drilling Feed rate 100 mm/min (for both milling and drilling)

Tabl	Description	Ν	G	G	G	Χ	Y	Z	R	Ι	J	K	Μ	Т	D	S	F
е 1. NC																	
NC																	

program manuscript

QUESTION FIVE

a)	Descr	ibe four applications of industrial robots	(4 marks)			
b)	Descr	ibe the following robot configurations;				
	i.	Spherical	(2 marks)			
	ii.	Cylindrical	(2 marks)			
	iii.	Rectangular	(2 marks)			
c)	Describe two limitations of the wireframe model (2 marks)					
d)	Describe the function of a graphics user interface (GUI) (2 marks)					

e) Describe the major phases in the history and evolution of CAD/CAM package

(6 marks)

Appendix

Rotation about z

	/C	-s	0	0\
P —	s	С	0	0
Λ_Z –	0	0	1	0
	/ 0	0	0	1 /

Where $c = \cos \theta$ $s = \sin \theta$

Translation matrix

$T_r =$	$\begin{pmatrix} 1\\0\\0\\0\\0 \end{pmatrix}$	0 1 0 0	0 0 1 0	$\begin{pmatrix} dx \\ dy \\ dz \\ 1 \end{pmatrix}$
	\0	0	0	1/

Scaling matrix

$$S_r = \begin{pmatrix} S_x & 0 & 0 & 0 \\ 0 & S_y & 0 & 0 \\ 0 & 0 & S_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Table 2: G-Codes

G00	Rapid traverse	G21	Input in mm
G01	Linear interpolation	G28	Return to reference point
G02	Circular interpolation -CW	G40	Cutter diameter compensation-cancel
G03	Circular interpolation -CCW	G41	Cutter diameter compensation-left
G04	Dwell	G42	Cutter diameter compensation-right
G08	Acceleration	G43	Tool length compensation (+)
G09	Deceleration	G49	Tool length compensation - cancel
G17	X-Y plane	G80	Canned cycle cancel
G18	Z-X plane	G81	Basic drill cycle
G19	Y-Z plane	G90	Absolute programming mode
G20	Input in inches	G91	Incremental programming mode
G94	Feed per minutes	G92	Set x, y, z locations

M00	Program stop	M06	Automatic Tool change
M01	Optional program stop	M07	Flood coolant on

Examination Irregularity is punishable by expulsion

M02	End of program	M08	Mist coolant on
M03	Spindle on CW	M09	Coolant off
M04	Spindle on CCW	M30	Program reset and rewind
M05	Spindle off	M13	Spindle forward and coolant on