

MACHAKOS UNIVERSITY

University Examinations 2019/2020 Academic Year SCHOOL OF PURE AND APPLIED SCIENCES DEPARTMENT OF MATHEMATICS AND STATISTICS APP 102: QUANTITATIVE TECHNIQUES FOR POLICY MAKERS

Date:

Time:

Answer question ONE and any other TWO questions

QUESTION 1: 30 MARKS (COMPULSORY)

a)	Solve $\frac{5x}{6}$ –	$\frac{2x-1}{3} =$	$=\frac{4}{5}$	(5 marks)

- b) Find a number such that 3 more than one half of the number is two thirds the number
 - (5 marks)

c)	Solve for x in	$x^2 - 9x + 4 = 0$	(4 marks)
----	----------------	--------------------	-----------

- d) Compute the value of the following limit $\lim_{x\to 2}(3x^2 + 5x 9)$ (5 marks)
- e) Use the definition of derivatives to differentiate $f(x) = x^2$ (5 marks)
- f) Find a_6 for an arithmetic sequence where $a_1 = 3x 1$ and d = 2x + 6 (6 marks)

QUESTION 2 (20 MARKS)

a)	Find the equation for	for the line that has a	slope of $\frac{2}{3}$ ar	nd passes through	(6,2) (4 marks)
----	-----------------------	-------------------------	---------------------------	-------------------	-----------------

- b) Evaluate the indefinite integral defined by $\int (2x^2 4x + 3) dx$ (4 marks)
- c) The fourth term of a geometric progression is 27 and the seventh term is 729. Find
 - i. The first term (4 marks)
 - ii. The common difference (4 marks)

d)	Evaluate $\frac{\log 125 - \log 25}{\log 25 + \log 5}$	(4 marks)
----	--	-----------

QUESTION 3 (20 MARKS)

- a) A rectangular field has an area of 75 m². The width of the field is 3 m longer than the length of the rectangle. What are the dimensions of the field? (8 marks)
 b) Differentiate f(t) = ^{3t+9}/_{2-t} with respect to t (6 marks)
- c) Determine the points where the function below is not continuous

$$h(t) = \frac{4t+10}{t^2 - 2t - 15} \tag{6 marks}$$

QUESTION 4 (20 MARKS)

a) The first term of an arithmetic sequence is equal to 6 and the common difference is equal to 3.

i.	Find the formula of the n th term	(3mks)
ii.	Find the 50 th term	(3mks)

b) Given that the fourth and the eight terms of the arithmetic sequence are $a_4=93$ and $a_8=65$

i.	Find the common differences d and the first term a	(4 marks)

- ii. Find the nth term (2 marks)
- c) Find S_{10} for 250, 100, 40, 16,.... (4 marks)
- d) Find the 9^{th} term of the sequence
 - 1, $\sqrt{2}$, 2, (4 marks)

QUESTIONS 5 (20 MARKS)

a) Use simplex method to maximize $z = 3x_1 + 2x_2$ subject to the following;

$-\mathbf{x}_1 + 2\mathbf{x}_2 \le 4$	
$3x_1 + 2x_2 \le 14$	
$x_1 - x_2 \le 3$	
$\mathbf{x}_1, \mathbf{x}_2 \ge 0$	(14 marks)

b) Evaluate the indefinite integral defined by $\int (x^4 + 3x + 1)dx$ (6 marks)