

UNIVERSITY EXAMINATIONS 2019/2020 ACADEMIC YEAR SCHOOL OF PURE AND APPLIED SCIENCES DEPARTMENT OF MATHEMATICS AND STATISTICS Examinations for Certificate in Electrical Engineering ECU 00201 MATHEMATICS IV

Year 2 semester 1

Instructions

Answer question ONE and any other TWO questions QUESTION ONE (30mks)

a) Define the following terms as used in probability

i)Event(1mks)ii)Sample space(1mks)iii)experiment(1mks)

b) Find the two values of x for which the matrix $\begin{bmatrix} x & 3x + 3 \\ 2 & x + 1 \end{bmatrix}$

has no inverse (4mks)

c) A ball is drawn at random from a box containing 6red balls ,4white balls, and 5 blue balls. Determine the probability that it is

i)red

ii)white

iii)blue

iv)not red

(5mks)

c) If E_1 the event drawing an ace from a deck of cards and E_2 is the event drawing a spade from a deck of cards, Find the probability of drawing either an ace or a spade or both. (3mks)

d) Given
$$A=\begin{bmatrix} 6 & 6 & -3 \\ -3 & 6 & 6 \\ 6 & -3 & 6 \end{bmatrix}$$
 verify that $AA^{-1}=\lambda I$ where I is an identity matrix and λ is a constant (6mks)

e) Mary bought 8 books and 5 pens at a total cost of Ksh 271 from a bookshop, Ann bought 14 books and 21 pens from the same bookshop at a total cost of Ksh 707. Using matrices determine the cost of each item

(4mks)

f) Given the following frequency distribution table calculate mean of the data

AGE	13	14	15	16	17
No. of	2	5	13	7	3
students					

(5mks)

QUESTION TWO

- a) Given the matrices $A=\begin{bmatrix}3 & -2\\4 & 0\end{bmatrix}$ $B=\begin{bmatrix}5 & 7\\2 & 3\end{bmatrix}$ $C=\begin{bmatrix}3 & 2\\2 & 5\end{bmatrix}$
- i) Show that A(B + C) = AB = AC
- ii) determine $B^{-1}C$ (14mks)
- b) The matrix $\bar{x} = \begin{bmatrix} a \\ b \end{bmatrix}$ satisfies the relationship ABX = C where

$$A = \begin{bmatrix} -2 & 3 \\ 3 & -5 \end{bmatrix} \qquad B = \begin{bmatrix} 4 & 5 \\ 3 & 2 \end{bmatrix} \text{ and } C = \begin{bmatrix} 3 \\ 18 \end{bmatrix}$$

Evaluate a and b (6marks)

QUESTION THREE

a) Given the matrices

$$A = \begin{bmatrix} 2 & 1 & -1 \\ -2 & 3 & 1 \\ 4 & 5 & -3 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 3 & 1 \\ 2 & -1 & -1 \\ 0 & 1 & 3 \end{bmatrix}$$

Evaluate

i) BA

(5MKS)

ii) $(BA)^{-1}$

(15mks)

QUESTION FOUR

The data below represents resistance in ohms of the resistors from a factory

Resistance in Ohms	15-19	20-24	25-29	30-34	35-39	40-44
Frequency	10	20	17	36	23	10

- a) using assumed mean method calculate the
 - i) mean

ii)variance

iii)standard deviation

(10mks)

b) Determine the i) mode

ii)median

(10mks)

QUESTION FIVE

- a) One bag contains 4white marbles and 2 black marbles. Another contains 3 white marbles and 5 black marbles. If one ball is drawn from each bag at random, find the probability that
 - i)both are white
 - ii)both are black

iii)one is white and one is black

(5mks)

b) The table below show the frequency distribution of marks obtained by students in a mathematics class

marks	20-25	-25-30	30-35	35-40	40-45	45-50
frequency	2	14	29	43	33	9

Calculate the mode and the median of the data

(10mks)

c)Solve the simultaneous equations using matrices

$$2x - y = 4$$

$$3x - 2y = -2$$
(5mks)