MACHAKOS UNIVERSITY

University Examinations 2019/2020 Academic Year
SCHOOL OF PURE AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS AND STATISTICS
\qquad .YEAR \qquad SEMESTER SPECIAL /SUPPLEMENTARY EXAMINATION FOR BACHELOR OF \qquad

SMA 435: METHODS OF FLUID MECHANICS

DATE:

INSTRUCTIONS

Answer question ONE and any other TWO questions

QUESTION ONE (30 MARKS)
a) Given that $f(\varepsilon)=\sin e^{\varepsilon}$, obtain a three-term asymptotic expansion for $f(\varepsilon)$ as $\epsilon \rightarrow 0$
b) Consider the functions $\phi_{1}(\varepsilon), \phi_{2}(\varepsilon), \ldots$. Given that the functions are well ordered as $\epsilon \rightarrow 0$, state the necessary condition that $f(\varepsilon)$ is an asymptotic expansion.
c) Given that $\phi_{1}=1, \phi_{2}=\varepsilon$ and $\phi_{3}=\varepsilon^{2} \ldots$, and $f(\varepsilon)=\frac{1}{1+\varepsilon}+e^{-1 / \varepsilon}$ obtain a three-term asymptotic expansion for $f(\varepsilon)$.
(5 marks)
d) Consider the function, $\Psi(r, \theta)$ where $r^{2}=x^{2}+y^{2}, x=r \cos \theta$ and $y=r \sin \theta$, show that; $\frac{\partial r}{\partial x}=\cos \theta, \frac{\partial r}{\partial y}=\sin \theta, \frac{\partial \theta}{\partial y}=\frac{\cos \theta}{r}$ and $\frac{\partial \theta}{\partial x}=-\frac{\sin \theta}{r}$
e) Compute the Laplace transform of $f(t)=e^{a t}$
f) Using finite element methods, determine the approximate solution of the equation;
$-\frac{d}{d x}\left(x \frac{d u}{d x}\right)+u=0$ for $0 \leq x \leq 1$ subject to $u(0)=1,\left(x \frac{d u}{d x}\right)_{x=1}=0$
(6 marks)

QUESTION TWO (20 MARKS)

a) Consider the equation $\varepsilon x^{2}+2 x-1=0$;
i. Define a singular perturbation.
ii. By sketching the suitable functions, state the number of real-valued solutions and approximate their locations.
(4 marks)
iii. Obtain a two-term asymptotic expansion for the solution of x for a small ε.(5 marks)
b) Find the asymptotic approximation of the solution of the differential equation

$$
\frac{d y}{d x}=f(x, y), \text { where } y=(u, q)^{T} \text { and } f=\left\{\begin{array}{l}
1-u e^{\varepsilon(q-1)} \tag{10marks}\\
u e^{\varepsilon(q-1)}-q
\end{array} \text { and } y(0)=0\right.
$$

QUESTION THREE (20 MARKS)

a) The Friedrichs model problem for boundary layer in viscous fluid is given by $\varepsilon y^{\prime \prime}=a-y^{\prime}$ for $0<x<1$, where $y(0)=0$ and $y(1)=1$ and a is a positive constant with $a \neq 1$. Derive a composite expansion of the solution of the problem.
(10 marks)
b) Obtain the composite expansion of the solution of the differential equation $\varepsilon y^{\prime \prime}+3 y^{\prime}+$ $y^{3}=0$ for $0<x<1$, where $y(0)=0$ and $y(1)=\frac{1}{2}$.
marks)

QUESTION FOUR (20 MARKS)

a) Solve the Laplace equation $\nabla^{2} \Psi=0$ on a disk of radius 3 units subject to the boundary conditions; $\Psi(3, \theta)=\left\{\begin{array}{cl}1, & 0 \leq \theta \leq \pi \\ \sin ^{2} \theta, & \pi \leq \theta \leq 2 \pi\end{array}\right.$
b) Find the Laplace transform of $f(t)=\left\{\begin{array}{c}1,0 \leq t \leq 2 \\ t-2, t \geq 2\end{array}\right.$
c) Solve the initial value problem by Laplace transform.

$$
\begin{equation*}
y^{\prime \prime}+9 y=6 \cos 3 t ; y(0)=0, y^{\prime}(0)=0 \tag{8marks}
\end{equation*}
$$

QUESTION FIVE (20 MARKS)

Consider the differential equation;
$-\frac{d^{2} u}{d x^{2}}-u+x^{2}=0 ;$
a) Using the weighted functions, $\phi_{0}=0$ and $\phi_{i}=x^{i}\left(1-x^{i}\right) ; i=1,2$ obtain the two parameter Rayleigh-Ritz solution subject to the boundary conditions, $u(0)=0, u(1)=0$
b) Using the weighted functions, $\phi_{0}=x$ and $\phi_{1}=-x(2-x)$ and $\phi_{2}=x^{2}\left(1-\frac{2}{3} x\right)$ obtain the two parameter Garlerkin solution subject to the boundary conditions

$$
u(0)=0, u^{\prime}(1)=0
$$

