

MACHAKOS UNIVERSITY

University Examinations 2019/2020 Academic Year
SCHOOL OF PURE AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS AND STATISTICS
...........YEAR SEMESTER SPECIAL /SUPPLEMENTARY EXAMINATION FOR BACHELOR OF SCIENCE IN BIOLOGY

SMA 101: MATHEMATICS FOR SCIENCE II

DATE:

TIME:

INSTRUCTIONS

Answer ALL the questions in Section A and ANY TWO Questions in Section B

SECTION A

QUESTION ONE 30 MARKS (COMPULSORY)
a) Find the area bounded by the curve $y=4-x^{2}$ and the y-axis
b) Evaluate the following limit

$$
\lim _{x \rightarrow 1}\left(x^{2}-2 x+3\right)
$$

c) Evaluate the following integral

$$
\begin{equation*}
\int e^{x^{5}} x^{4} d x \tag{5marks}
\end{equation*}
$$

d) Find the $\lim _{x \rightarrow 0} x^{2} \sin \frac{1}{x}$
e) Find the limit of $\lim _{\theta \rightarrow \infty} \frac{\sin 2 \theta}{\theta}$
f) Find the derivative of $f(x)=2 x^{2}-x+5$ from the first principal
g) Find the derivative of $f(x)=\sin x$ using the $1^{\text {st }}$ principal
h) Integrate the following functions with respect to x

$$
\begin{equation*}
y=\tan ^{8} x \sec ^{2} x \tag{4marks}
\end{equation*}
$$

SECTION B

QUESTION TWO (20 MARKS)
a) Obtain the derivative of $f(x)=5 x^{2}-\cos x+2$
b) Find $\frac{d y}{d x} \mathrm{~d}$ for the following function

$$
\begin{equation*}
x=3 t^{2}+4 t \quad y=e^{3 t}+\cos ^{-1} t \tag{5marks}
\end{equation*}
$$

c) Differentiate $4 x y+\left(4 x^{4} y^{3}+12 x y^{5}=12+12 y\right.$ with respect to x (5 marks)
d) Obtain the derivative of the following functions

$$
\begin{equation*}
f(x)=3(2 x+2)^{4}+x^{3} \tag{5marks}
\end{equation*}
$$

QUESTION THREE (20 MARKS)

a) Calculate the maxima and minima values of function $y=x^{3}-3 x^{2}+2$ and distinguish between them and sketch the graph.
(5 marks)
b) A cylinder is to be constructed so that the sum of height and ball radius is 6 cm . Denoting ball radius by $r \mathrm{~cm}$, volume $v \mathrm{~cm}^{3}$. Show that $r=\pi\left(6 r^{2}-r^{3}\right)$. Hence show the value of r which make V a maxima.
c) Show that $\sin ^{2} \theta+\cos ^{2} \theta=1$
d) Differentiate $\cos x$ using the first principle

QUESTION FOUR (20 MARKS)

a) Find the integrals of the following function with respect to $\mathrm{x}, y=\frac{2 x+2}{x^{2}+2 x+1}$ Evaluate the

$$
\begin{equation*}
\int_{1}^{2} \ln x d x \tag{5marks}
\end{equation*}
$$

b) Evaluate the following integral using the given change of variable

$$
\begin{equation*}
\int \frac{x(x-4)}{(x-2)^{2}}, \quad u=x-2 \tag{5marks}
\end{equation*}
$$

c) Evaluate the following integral
i) $\quad \int x^{4} \sqrt{x^{5}+5} d x$
ii) $\int \sin 3 x \cos 4 x d x$

QUESTION FIVE (20 MARKS)

a) Find the area bounded by the $x=9-y^{2}$ and the y-axis
b) Find the volume of the solid generated by the region $y=x^{2}+1$, x-axis and the lines $x=-1$ and $x=1$, rotated 360° about the x-axis.
c) The region bounded by the y-axis, $y=x^{3} y=1$ and $y=8$ is rotated 360° about the y axis. Find the volume of the resulting solid.
d) Find the volume generated by revolving the region bounded by $y=\sqrt{x}$, the lines

$$
x=1 \text { and } x=4 \text { about the line } y=1
$$

