

MACHAKOS UNIVERSITY

University Examinations 2019/2020 Academic Year
SCHOOL OF PURE AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS AND STATISTICS
...........YEAR SEMESTER SPECIAL /SUPPLEMENTARY EXAMINATION FOR BACHELOR OF SCIENCE IN MATHEMATICS AND COMPUTER SCIENCE BACHELOR OF SCIENCE IN MATHEMATICS

BACHELOR OF EDUCATION

SMA 400: TOPOLOGY
DATE:
TIME:

INSTRUCTIONS

Answer ALL the questions in Section A and ANY TWO Questions in Section B

SECTION A

QUESTION ONE 30 MARKS (COMPULSORY)
a) Let $X=\{1,2,3,4\}$ and $\rho=\{\emptyset, X,\{1\},\{2\},\{1,2\},\{1,2,3\},\{2,3\}\}$. Let $E=\{1,2,3\}$. Find the set of all limit points of E .
b) Give the definition of a topological space.
c) Let (X, ρ) be a topological space show that if $A, B C X$ and $A C B$ then $A^{d} C B^{d}$
d) Let X be a non void set ρ_{d} be a discrete topology in X . If $E \subset X$ find E^{d} (the set of all limit points of E).
e) Let $X=\{i, j, k, l\}$. Let $S=\{\{i\},\{j, k\},\{k, l\}\}$ be a collection of subsets of X. Give the topology generated by the set S.
f) Let $X=\{i, j, k, l, m\}$ and $\rho=\{\varnothing, X,\{i\},\{j\},\{i, j\},\{k\},\{i, j, k\},\{i, k\},\{j, k\}\}$.
g) Let $E=\{a, b, c\}$. Find:
i) The closure of E
ii) The interior of E

QUESTION TWO (20 MARKS)

a) Consider R with the usual topology and let $Y=(0,1) \cup\{2\}$ if $E=\left(\frac{1}{2}, 1\right)$ find the closure of E in the subspace Y.
(6 marks)
b) Find the topology generated in R by the class of all closed sub-intervals of the type $(b, b+$ 1).
(5 marks)
c) Find the topology generated by the sub-basis $\beta=\{\{a\},\{a, c, d\},\{b, c\},\{c\}\}$, where $X=\{a, b, c, d\}$ marks)
d) Let X be a non-empty set. Define the following topologies
i. Trivial topology
ii. Discrete topology
e) Define the neighborhood of a point $p \in X$ where X is a topological space.

QUESTION THREE (20 MARKS)

a) Given any collection of subsets of a nonvoid set X. Will this collection serve as a base for the topology?
b) If N_{1} and N_{2} are two neighborhoods of x, show that $N_{1} \cap N_{2}$ is also a neighborhood of x. .
c) Consider the topology $\tau=\{X, \emptyset,\{1\},\{3,4\},\{1,3,4\},\{1,3,4,5\}\}$ on $X=\{1,2,3,4,5\}$ and the subset
d) $\quad A=\{b, d, e\}$ of X. Compute showing working out:
i. $\quad \operatorname{Int}(A)$
ii. $\operatorname{Ext}(A)$ (3 marks)
iii. $\quad B^{\prime} \operatorname{dary}(A)$

QUESTION FOUR (20 MARKS)

Let (X, ρ) be a topological space show that; If $y \in F^{d}$ then $y \in(F-\{y\})^{d}$.
a) Let (X, τ) be a topological space. Define a base and sub-base for the topology τ on X.
b) Let $X=\{x, y, z\}$ and $\tau=\{\{x, y\},\{y, z\}, \emptyset,\{y\},\{x, y, z\}\}$. Give the base and sub-base for the topology τ on X.
c) Given a subset A of a topological space, define what it means for p to be a limit point of A. (2 marks)
d) Consider the discrete topology τ on $X=\{1,2,3,4\}$. Find the sub-base and the bases for τ.

QUESTION FIVE (20 MARKS)

a) Let (X, ∂) be a metric space and $\mathrm{A} \mathrm{C} X$. Then prove that if P is a limit point of A every neighborhood of P contains infinitely many points distinct from P .
b) Let $X=\{a, b, c, d, e\}$ and $J=\{\emptyset, x\{a\}\{b, c\}\{b, c, d\}\{a, b, c\}\{a, d\}\{d\}\{a, b, c, d\}\}$ let $Y=\{a, b, c, d\}$,
i) find the relative topology on Y
ii) Define relative topology
iii) Find the closed set in relative topology
c) Define hereditary as used in topological spaces
d) $\quad T_{0}$ and T_{1} spaces are hereditary prove
e) Show that every metric space is a T_{2} space.

