

MACHAKOS UNIVERSITY

University Examinations 2019/2020 Academic Year

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

FOURTH YEAR SPECIAL /SUPPLEMENTARY EXAMINATION FOR

BACHELOR OF SCIENCE IN MATHEMATICS & COMPUTER SCIENCE

BACHELOR OF SCIENCE IN MATHEMATICS

BACHELOR OF EDUCATION

SMA 401: TOPOLOGY II

DATE: 21/1/2021 TIME: 8.30-10.30 AM

INSTRUCTIONS

Answer ALL the questions in Section A and ANY TWO Questions in Section B

SECTION A

QUESTION ONE (30 MARKS) COMPULSORY

- a) Define the following terms
 - i) Finite intersection property
 - ii) Sequentially compact
 - iii) Compact spaces
 - iv) Separated sets
 - v) Locally compact sets

(5 marks)

- b) Prove that the open interval $A = (0, \frac{1}{2})$ on the real line \mathbb{R} with the usual topology is not compact. (5 marks)
- Consider the following topology on $X = \{a, b, c, d, e\}$ $\rho = \{X, \emptyset, \{a, b, c\}, \{c, d, e\}, \{c\}\}$. Now $A = \{a, d, e\}$. Show that A is disconnected. (5 marks)

- d) Prove that if X is sequentially compact then it is countably compact. (5 marks) e) Prove that a set is disconnected if and only if it is not a union of two non-empty separated sets. (5 marks) (5 marks) f) Prove that if X is compact then it is countably compact. **SECTION B QUESTION TWO (20 MARKS)** Prove that if A and B are disjoint compact subsets of Hausdorff spaces X. Then ∃ open set a) G and H such that $A \subset G$ and $B \subset H$ and $G \cap H = \emptyset$ (6 marks) Let \mathbb{Z} be the set of integers. Is it sequentially compact. (3 marks) b) Let $G \cap H$ be a disconnection of A. show that $G \cap A$ and $H \cap A$ are separated. (5 marks) c) d) Let $G \cup H$ be a disconnection of A and B be a connected subset of A. Show that $B \cap G = \emptyset$ or $B \cap H = \emptyset$. (6 marks) **QUESTION THREE (20 MARKS)** Show that an infinite subset A of a discrete space X is not compact (7 marks) a) b) Prove that a closed subset F of a compact set X is also compact. (7 marks) Prove that a topological space X is compact if and only if $\{F_i\}$ of closed subsets of X c) satisfies the finite intersection property. (6 marks) **QUESTION FOUR (20 MARKS)** Define hereditary as used in topological spaces (2 marks) a) b) $T_{0 and} T_{1}$ spaces are hereditary prove (6 marks)
- c) Let (X, ρ) be a topological space (X, ρ) is a T_1 space iff each singleton subset $\{x\}$ is closed in (X, ρ) (6 marks)
- d) Prove that if X, ρ is a topological space which is a T_2 . Then every convergent sequence of points of X has a unique limit. (6 marks)

QUESTION FIVE (20 MARKS)

- a) Prove that every compact subset of a Housdorff space is closed. (5 marks)
- b) Show that if A and B are non-empty separated sets. Then, $A \cup B$ is disconnected (5 marks)
- c) Show that every metric space is hausdorff space (5 marks)
- d) Prove that if F is closed subset of a compact space X, then F is also compact. (5 marks)