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Abstract- . The Elliptic Curve Digital Signature Al-
gorithm (ECDSA), defines a technique for generating
and validating digital signatures. We start by review-
ing the mathematics behind the Digital Signature Algo-
rithm (DSA) and its elliptic curve analogue (ECDSA).
Secondly, we describe how the ECDSA is used in Bitcoin
technology.

Bitcoin is a type of crypto-currency that has been
in existence since 2009. It was introduced by Satoshi
Nakamoto (possibly a pseudonym) in their much cited
paper [8]. Its design and distribution is not controlled
by any central organization. Despite this, Bitcoin has
defied all odds to become a phenomenal currency widely
accepted by thousands of merchants worldwide. At the
time of writing this article, 1 unit of Bitcoin (1 BTC)
has a value of approximately USD 5,500. The internal
workings of Bitcoins is based on elliptic curve digital
signatures and is not well understood by many people
including a large percentage of Bitcoin users. The the
second part of this article we make give an overview to
illuminate how the internal nuts and bolts of Bitcoin
works.
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1. Introduction

This article is a short overview of elliptic curves dig-
ital signatures and their application in the blockchain
technologies. The theory of elliptic curves and their ap-
plication to cryptography is a much wider subject. The
interested readers are encouraged to consult much deeper
expositions contained in [11, 5].

2. Discrete logarithm problem

Let G be a finite cyclic group generated by a ∈ G and
x ∈ G be an element. This means that x = an for some
integer n. The integer n is called the discrete logarithm
of x to the base a. Given the pair a, n the problem of
computing an in G is generally considered to be an easy
problem. On the other hand, given an element x ∈ G
then the problem of obtaining n such that x = an is
generally a difficult problem. This problem is referred
as the discrete logarithm problem (DLP).

In 1976, Deffie and Hellman [1] proposed the public
key cryptography whose security relied on the difficulty
of the discrete logarithm problem. Since then there has
been intense research in finding efficient ways to solve
the discrete logarithm problem as well as identifying po-
tential finite groups whose corresponding DLP would be
much harder to solve.

Elliptic Curve Cryptography (ECC) was introduced
independently by Miller [6] and Koblitz [5]. They pro-
posed a cryptographic system based on the group of
points of an elliptic curve defined over Fq - a finite field
of order q. One of the reasons for their suggestion was
based on the evidence that the elliptic curve discrete log-
arithm problem was much harder to solve compared to
their counterparts over Zp.

3. Elliptic curves over finite fields

An elliptic curve over R is a curve in the two dimensional
plane whose points satisfy the Weierstarss equation

y2 = x3 + ax + b. (1)

Arithmetics over R often yields irrational numbers
which, due to truncation errors, cannot be stored effi-
ciently in computer memory. This is the reason why it
is preferable to work with elliptic curves over Fq - i.e. a
finite field of order q where q = pk for some integers p, k
with p a prime. In this case we are interested in integers
that satisfy

y2 = x3 + ax + b mod p (2)

if p 6= 2. If p = 2, equation (2) above is usually replaced
by

y2 + xy = x3 + ax2 + b. (3)

Definition 1. An elliptic curve E(Fq) defined over Fq

consist of the set of points Pi = (xi, yi) satisfying equa-
tions (2) or (3) above together with an additional point
O called the point at infinity.

For practical uses, it is required that the curve be
non-singular. This amounts to choosing numbers a, b
such that 4a + 27b is not congruent to 0 modulo p.

Over R, there is a natural geometric construction
(cord and tangent process [11, III §2]) that trasnforms
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the points of an elliptic curve into an abelian group hav-
ing O as the neutral element. The geometric construc-
tion relies on a special case of the Bézout Theorem [4,
I.7.8] stating that any pair of projective curves of degrees
n,m intersects at exactly nm points. For the purposes
of this short article, we shall give explicit formulas for
addition of points.

The group operation on E(Fq) is written additively.
Given P1 = (x1, y1) and P2 = (x2, y2) points on E(Fq),
one can obtain a third point P3 = (x3, y3) = P1 + P2

using the following explicit formulas. Assuming that
P1 6= P2 and p 6= 2 then

x3 =

(
y2 − y1
x2 − x1

)2

− x1 − x2 (4)

y3 =

(
y2 − y1
x2 − x1

)
(x1 − x3)− y1. (5)

On the other hand, if P1 = P2 and p 6= 2 then we have
the point doubling formulas as follows

x3 =

(
3x2

1 + a

2y1

)2

− 2x1 (6)

y3 =

(
3x2

1 + a

2y1

)
(x1 − x3)− y1. (7)

If p = 2 and P1 6= P2 then equations (4) and (5) are
replaced by

x3 =

(
y2 + y1
x2 + x1

)2

+

(
y2 + y1
x2 + x1

)
+ a + x1 + x2 (8)

y3 =

(
y2 + y1
x2 + x1

)
(x1 + x3) + y1 + x3. (9)

Finally if p = 2 and P1 = P2 then the addition formulas
are given by

x3 =

(
x4
1 + b

x2
1

)
(10)

y3 =

(
x2
1 + y1
x1

)
(x3) + x2

1 + x3. (11)

The operations in equations (4) - (11) are performed
modulo p and thus divisions should be interpreted as
multiplications by multiplicative inverses. Though the
equations above are obtained from a geometrical con-
struction, these equations are evaluated using modular
arithmetics, thus loosing their geometric interpretations.

4. Elliptic Curve Cryptosystems

In practice, a cyclic subgroup of E(Fq) is used rather
than the entire group. This amounts to choosing pa-
rameters a, b, p, k and an additional point G ∈ E(Fq)
generating a sufficiently large cyclic subgroup of E(Fq).
These parameters are shared publicly and are used for
generating public keys. For simplicity, we will assume
that E(Fq) is cyclic generated by a point G ∈ E(Fq)

(This is not true in general - see [7] for details). Our as-
sumption implies that any point P on the elliptic curve
can be expressed as

P = nG = G + · · ·+ G (12)

where n is a non-negative integer.

Definition 2 (Elliptic Curve Discrete Logarithm Prob-
lem - ECDLP). Let P be a point in the cyclic subgroup
of E(Fq) generated by G. Find the smallest integer n
such that P = nG.

The security of an elliptic curve based cryptosystem
relies on the difficulty of the ECDLP. Given an integer
n it’s easy to compute the point nG, while on the other
hand if a point P is of the form nG for some integer
n then it is computationally infeasible to obtain the in-
teger n. This means that one would require enormous
amount of resources to be able to solve the problem. A
related and more relevant problem is the Elliptic Curve
Diffie-Hellman Problem (ECDHP) stated as follows.

Definition 3 (ECDHP). Let Q,R be points in the cyclic
subgroup of E(Fq) generated by G such that Q = nQG
and R = nRG for some nQ, nR. Determine P =
nQnRG.

It is easy to see that if one can solve ECDLP effi-
ciently then one would be able to solve the ECDHP.

We now discuss how the ECDHP is used in genera-
tion and verification of elliptic curve based digital signa-
tures. Recall that a digital signature is a cryptographic
primitive which is fundamental in authentication, autho-
rization and non-repudiation. Creation and verification
of digital signature relies on the concept of a one-way
hash function.

Definition 4. A hash function H is a computation-
ally efficient function mapping binary strings of arbitrary
length to binary strings of a fixed length.

The hash function H is required to satisfy the follow-
ing properties:

• Collision resistance - it should be computationally
infeasible to find distinct inputs m1,m2 such that
H(m1) = H(m2),

• Pre-image resistance - given an output value x it
should be computationally infeasible to find an in-
put m such that H(m) = x,
• Second pre-image resistance - given an input mes-

sage m it should be computationally infeasible to
find another input m′ such that H(m) = H(m′).

4.1. Elliptic Curve Digital Signature Algo-
rithm

In this scenario, Alice needs to send a message to Bob.
Alice would digitally sign the message before transmit-
ting it to Bob. Upon receipt, Bob would need to verify
that indeed the message is from Alice and not from an
impersonator Eve.
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It is assumed that an elliptic curve E(Fq) and a point
G ∈ E(Fq) of order l have been chosen and made public.
For Alice to sign a message m she needs to choose a ran-
dom integer nA as her private key, compute her public
key as KA = nAG. The public key is made public by
depositing it at a Trusted Authority (TA).
ECDSA - Message Signing Algorithm:

1. Alice selects a random integer k such that 1 < k <
l.

2. She computes kG = (x1, y1) ∈ E(Fq) and set
r = x1 mod l. If r = 0 go back to 1.

3. She computes k−1 mod l.
4. She computes s = k−1(H(m) +nAr) mod l, where

H is a publicly available hash function.
5. She sends the signed message (m, s, r) to Bob.

ECDSA - Signature Verification Algorithm: Bob
receives the message as (m′, s′, r′). He will first obtain
Alice’s public key KA from the TA then use the following
procedure:

1. Bob verifies that r′ and s′ lies in the interval
[1, l − 1],

2. He then computes w = s′−1 mod l and the message
hash H(m′).

3. He then computes u1 = H(m′)w mod l and u2 =
r′w mod l.

4. Finally he computes u1G + u2Ka = (x0, y0) and
set v = x0 mod l.

If the message if authentic i.e. (m′, s′, r′) = (m, s, r)
then we have

k = s−1(H(m) + nAr) mod l

= w(H(m) + nAr)

= u1 + u2nA.

Thus kG = (u1 + u2nA)G = u1G + u2Ka = (x0, y0).
Hence Bob accepts the message as authentic if and only
if v = r′.

Now suppose that Eve would like to impersonate Al-
ice. She creates a fictitious message m, picks a random
integer k, computes kQ = (x1, y1) and chooses r = x1

mod l. She also computes H(m) and k−1. Her task will
then be to figure out the correct s such that when used
in the verification procedure it yields v such that v = r.
But s depends on Alice’s secret key nA and so Eve would
have to employ any technique that either gives her the
correct s without nA or solve the elliptic curve discrete
logarithm problem to obtain Alice’s secret key by using
Q and Alice’s public key KA = nAQ. If we assume that
Eve has succeed in finding the correct s then we know
that

r = v = H(m)wQ + rwKA

where w = s−1 mod l. Thus skQ = H(m)Q + rKA.
Letting z be the inverse of r mod l then we have

z(sk −H(m))Q = KA = nAQ

This means z(sk − H(m)) = nA =logQ(KA) and thus
Eve would have solved the elliptic curve discrete loga-
rithm problem.

5. Use of Digital Signatures in Bitcoin

For the rest of this article, we describe how digital sig-
natures are applied in Bitcoin technology. In a nutshell,
the basic concepts of Bitcoin are:

• Bitcoin address - a digital analogue of a physical
wallet,
• Transactions - records of transfer of Bitcoins from

one address to another address,
• Blockchain - a publicly available ledger of all the

transactions that has ever taken place.

The elliptic curve chosen by Satoshi Nakamoto de-
fined by the equation

y2 = x3 + 7 mod p (13)

where p is the integer

p = 2256 − 232 − 977

= 1157920892373161954235709850086879

07853269984665640564039457584007908

834671663.

The data above defines an elliptic curve E(Fq) of order

q = 1157920892373161954235709850086879

07852837564279074904382605163141518

161494337.

Other piece of publicly available data used in Bitcoin is
the point G = (x0, y0) ∈ E(Fq) - a generator of a cyclic
subgroup of E(Fq). The coordinates of G are

x0 = 55066263022277343669578718895168

53432625060345377759417550018736038

9116729240,

y0 = 32670510020758816978083085130507

04318447127338065924327593890433575

7337482424.

The hashing algorithm used in Bitcoin is the SHA-256
introduced by the American National Institute for Stan-
dards and Technology [3, 12, 10]. In practice this hashing
algorithm is applied twice (denoted by SHA-2562) so as
to improve the security of transactions. For our purposes
we shall simply represent SHA-2562 as H.

5.1. Bitcoin Addresses

While handling physical money, one needs a wallet, an
account, a pocket e.t.c to temporarily store the money.
Similarly in Bitcoin technology, one needs a digital ad-
dress to hold the digital money. These addresses will
look like the following:

12C4GbvvWGihHjda4y8y48he1EGjDAnMDr
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To create a Bitcoin address, Alice chooses a private key
nA which is a random integer, computes and publishes
her public key KA = nAG. To generate an address, the
public key KA is hashed with SHA−256 and RIPEMD-
160 [9, 2] a number of times before being encoded using
to Base-58. Note that it is computationally infeasible
to obtain the private key nA given either the public key
or the Bitcoin address. This will amount to solving the
ECDLP.

5.2. Bitcoin Transactions

Bitcoin transactions are public messages which are dig-
itally signed and broadcasted to the entire Bitcoin net-
work for verification. Assume that Alice has 1.0005 BTC
and would like to send 1 BTC to Bob. In layman’s terms
Alice would broadcast a message like

Other participants in the Bitcoin network needs to
verify that indeed Alice is the owner of the Bitcoin
amount and additionally verify that its indeed Alice who
has initiated the transaction. All these verifications are
done using ECDSA. Specifically, the message will com-
prise of three main parts:

• An input: a Bitcoin address from which Alice re-
ceived the amount she is about to send to Bob,

• An amount: the specified amount in BTC that
Alice intends to send to Bob,

• An output: a Bitcoin address owned by Bob
which is set to receive the amount in BTC.

Alice would digitally sign the broadcasted message which
would then be effected if and only if the Bitcoin network
is able to verify (ECDSA Verification Algorithm) that
the message is indeed authored by Alice.

5.3. The Bitcoin Blockchain

In a nutshell, we can say that the Bitcoin blockchain is
a publicly available digital ledger that records the trans-
actions between various Bitcoin addresses. Each trans-
action in the public ledger is verified by consensus of a
majority of the participants in the system. And, once en-
tered, information can never be erased. The blockchain
contains a certain and verifiable record of every single
transaction ever made.

6. Conclusion

The security of a crypto-system based on elliptic curves
derives its security from the computational infeasibility
of the Elliptic Curve Discrete Logarithm Problem. It is
the difficultly of solving this problem that also assures
the Bitcoin network of the security and authenticity of
transactions on the blockchain.

Figure 1: Graphical representation of entries in a Bitcoin blockchain.
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