

AGB 202: STATISTICS FOR AGRIBUSINESS

DATE:

a)

TIME:

Instructions: Answer Question1 and ANY TWO other questions. Statistical tables are annexed.

QUESTION 1 (30 MARKS)

Diff	erentiate between the following terms as used in statistics	
i.	A statistic and a parameter	(2 marks)
ii.	Sampling error and sampling frame	(2 marks)
iii.	Standard deviation and coefficient of variation	(4 marks)

b) A farmer sold 125 small-sized fruits at Ksh 15 each, 230 medium-sized fruits at Ksh 20 each, and 80 large-sized fruits at Ksh 25 each. Find the weighted mean price of the fruits

(2 marks)

- c) An agribusiness firm intends to promote its new products through giving gifts to its potential customers. How many unique gift packs, each containing 3 different products, can the firm make from its portfolio of 10 products?
 (3 marks)
- d) A country's agricultural GDP growth rate in six consecutive years was 1.9%, 8.5%, -1.2%, 9.7%, -2.1% and 3.4%. Find the geometric mean GDP growth rate (3 marks)
- e) The following data shows the number of cows kept by a sample of farmers: 3, 1, 35, 3, 4, 2, 25 and 3. Using measures of central tendency, describe the symmetry of the data. (4 marks)
- f) The volume of a packet of milk follows a normal distribution with a mean of 500ml and standard deviation of 3.7ml. In a sample of 36 packets, find the probability that the volume of a random packet:

i.	Is more than 500ml	(2 marks)
ii.	Ranges between 496.3ml and 503.7ml	(3 marks)

g) The table below shows weekly sales revenue from different products marketed by Maziwa Ltd. Present the data in a pie chart
 (5 marks)

Product	Fresh Milk	Butter	Flavored Milk	Mala	Yoghurt
Sales (KSh'000)	500	180	65	125	330

QUESTION TWO (20 MARKS)

- a) A marketer of cut flowers claims that roses from your two farms are not cut to the same length. As the production manager you sample 48 flower stems from one farm and 31 stems from the second farm and obtain mean stem lengths of 42.5cm and 40.8cm respectively. The population standard deviation of farm1 stems is 2.3cm while that of farm2 stems is 1.9cm. Test whether the marketer's claim is statistically true
- b) The Managing Director of Ngano Ltd is interested in understanding the weekly demand for wheat sold by their firm. Records from a sample of 12 weeks reveals the following quantities (tons) sold per week:

Firm No.	1	2	3	4	5	6	7	8	9	10	11	12
Quantity Sold (tons)	46	42	41	53	51	21	49	32	28	50	37	40

- i. Determine a 95 percent confidence interval for the mean weekly sales (10 marks)
- ii. Explain whether the Managing Director can agree that the population mean is 65 tons as claimed by the Marketing Manager (2 marks)

QUESTION THREE (20 MARKS)

a) The data below shows value of production at each level of staff training costs incurred by a grain milling company.

Staff	train	ing	costs	(Ksh	2	1	3	4
million)							
Value	of	proc	luction	(Ksh	6	2	7	9
million)							

- i) Derive the regression equation for estimating the relationship between value of production and staff training costs (8 marks)
- ii) Use the equation in (i) above to predict value of production for staff training costs of Ksh 10 million (2 marks)
- b) A researcher assessing tea sales (tons) of three cooperatives obtained the following data. Test whether the mean tea sales differ significantly across the cooperatives. (10 marks)

Month	Cooperative A	Cooperative B	Cooperative C
January	55	66	47
February	54	76	51
March	59	67	46
April	56	71	48

QUESTION FOUR (20 MARKS)

- a) A tray of eggs contains 25 good eggs and 5 rotten ones. Three eggs are to be drawn sequentially from the box randomly without replacement. Using a probability tree, compute the probability that:
 - i. None of the eggs drawn will be rotten (3 marks)
 - ii. At least one egg will be rotten
- b) The frequency distribution below shows the number of employees in a sample of farms.

No. of workers	4 up to	12 up to	20 up to	28 up to	36 up to	44 up to	52 up to	
	12	20	28	36	44	52	60	
Frequency	8	11	23	38	45	32	19	

Calculate the:

i.	Median	(4 marks)
ii.	Arithmetic mean	(4 marks)
iii.	Standard deviation	(5 marks)

QUESTION FIVE (20 MARKS)

- a) The farm sizes of sample of farmers were: 0.1, 3.5, 0.4, 16.4, 8.9, 10.1, 1.5, 1.2, 6.4, 1.1, 7.8 and 3.2. Find the interquartile range (8 marks)
- b) Workers at ABC Company have complained that their overtime hours worked exceeded the 5 hours for which the company paid them. The management took a sample of 76 workers and found the average overtime hours worked in the previous week was 7.7, with standard deviation 1.9 hours. Test whether the workers' complaint is true (12 marks)

(4 marks)

B.1 Areas under the Normal Curve

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990

B.2 Student's t Distribution

			Confidence	e Intervals,	C		Confidence Intervals, c								
	80%	90%	95%	98%	99%	99.9%		80%	90%	95%	98%	99%	99.9%		
		Level of	Significanc	e for One-Ta	ailed Test, a				Level of	Significanc	e for One-T	ailed Test, α			
df	0.10	0.05	0.025	0.01	0.005	0.0005	df	0.10	0.05	0.025	0.01	0.005	0.0005		
		Level of	Significance	e for Two-T	ailed Test, o	1		Level of Significance for Two-Tailed Test, α							
	0.20	0.10	0.05	0.02	0.01	0.001		0.20	0.10	0.05	0.02	0.01	0.001		
1	3.078	6.314	12.706	31.821	63.657	636.619	36	1.306	1.688	2.028	2.434	2.719	3.582		
2	1.886	2.920	4.303	6.965	9.925	31.599	37	1.305	1.687	2.026	2.431	2.715	3.574		
3	1.638	2.353	3.182	4.541	5.841	12.924	38	1.304	1.686	2.024	2.429	2.712	3.566		
4	1.533	2.132	2.776	3.747	4.604	8.610	39	1.304	1.685	2.023	2.426	2.708	3.558		
5	1.476	2.015	2.571	3.365	4.032	6.869	40	1.303	1.684	2.021	2.423	2.704	3.551		
6	1.440	1.943	2.447	3.143	3.707	5.959	41	1.303	1.683	2.020	2.421	2.701	3.544		
7	1.415	1.895	2.365	2.998	3,499	5.408	42	1.302	1.682	2.018	2.418	2.698	3.538		
8	1.397	1.860	2.306	2.896	3.355	5.041	43	1.302	1.681	2.017	2.416	2.695	3.532		
9	1.383	1.833	2.262	2.821	3.250	4.781	44	1.301	1.680	2.015	2.414	2.692	3.526		
10	1.372	1.812	2.228	2.764	3.169	4.587	45	1.301	1.679	2.014	2.412	2.690	3.520		
11	1.363	1,796	2,201	2,718	3,106	4.437	46	1,300	1,679	2.013	2,410	2,687	3,515		
12	1.356	1 782	2 179	2 681	3 055	4 318	47	1.300	1 678	2012	2 408	2 685	3 510		
13	1.350	1 771	2 160	2 650	3.012	4 221	48	1 299	1 677	2011	2 407	2 682	3 505		
14	1.345	1 761	2 145	2 624	2 977	4 140	49	1 299	1 677	2 010	2 405	2 680	3 500		
15	1.341	1.753	2.131	2.602	2.947	4.073	50	1.299	1.676	2.009	2.403	2.678	3.496		
16	1 337	1 746	2 1 2 0	2 583	2 921	4.015	51	1 208	1.675	2 008	2 402	2 676	3 492		
17	1 333	1 740	2 110	2.567	2.898	3 965	52	1 298	1.675	2.000	2 400	2 674	3 488		
18	1 330	1 734	2 101	2.507	2.030	3 922	52	1 208	1.674	2.007	2 300	2.672	3 484		
10	1 328	1 720	2.003	2 530	2.861	3 883	54	1 207	1.674	2.000	2 307	2.670	3 480		
20	1 325	1.725	2.035	2.535	2.001	3,850	55	1 207	1.673	2.003	2.337	2.668	3.400		
20	1.525	1.725	2.000	2.520	2.045	5.050	55	1.231	1.075	2.004	2.550	2.000	3.470		
21	1.323	1.721	2.080	2.518	2.831	3.819	56	1.297	1.673	2.003	2.395	2.667	3.473		
22	1.321	1.717	2.074	2.508	2.819	3.792	57	1.297	1.672	2.002	2.394	2.665	3.470		
23	1.319	1.714	2.069	2.500	2.807	3.768	58	1.296	1.672	2.002	2.392	2.663	3.466		
24	1.318	1.711	2.064	2.492	2.797	3.745	59	1.296	1.671	2.001	2.391	2.662	3.463		
25	1.316	1.708	2.060	2.485	2.787	3.725	60	1.296	1.671	2.000	2.390	2.660	3.460		
26	1.315	1.706	2.056	2.479	2.779	3.707	61	1.296	1.670	2.000	2.389	2.659	3.457		
27	1.314	1.703	2.052	2.473	2.771	3.690	62	1.295	1.670	1.999	2.388	2.657	3.454		
28	1.313	1.701	2.048	2.467	2.763	3.674	63	1.295	1.669	1.998	2.387	2.656	3.452		
29	1.311	1.699	2.045	2.462	2.756	3.659	64	1.295	1.669	1.998	2.386	2.655	3.449		
30	1.310	1.697	2.042	2.457	2.750	3.646	65	1.295	1.669	1.997	2.385	2.654	3.447		
31	1.309	1.696	2.040	2,453	2,744	3,633	66	1,295	1,668	1,997	2.384	2,652	3.444		
32	1.309	1.694	2.037	2.449	2,738	3.622	67	1.294	1.668	1,996	2,383	2.651	3.442		
33	1.308	1.692	2.035	2.445	2,733	3.611	68	1,294	1,668	1,995	2.382	2,650	3,439		
34	1.307	1.691	2.032	2.441	2,728	3.601	69	1,294	1.667	1,995	2.382	2,649	3.437		
35	1.306	1.690	2.030	2.438	2,724	3,591	70	1,294	1.667	1,994	2.381	2.648	3,435		
	1.000	1.000	2.000	2.100	E.1 ET	0.001	10	1.204	1.007	1.004	2.001	2.010	0.100		

B.4 Critical Values of the *F* **Distribution** at a 5 Percent Level of Significance

							D	egrees o	f Freedo	m for the	Numera	tor					
		1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40
	1	161	200	216	225	230	234	237	239	241	242	244	246	248	249	250	251
	2	18.5	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.5	19.5	19.5
	3	10.1	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.70	8.66	8.64	8.62	8.59
	4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.77	5.75	5.72
	5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.53	4.50	4.46
	6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.84	3.81	3.77
	7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51	3.44	3.41	3.38	3.34
	8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.12	3.08	3.04
	9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.90	2.86	2.83
tor	10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85	2.77	2.74	2.70	2.66
ina	11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.61	2.57	2.53
non	12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.51	2.47	2.43
Dei	13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2.46	2.42	2.38	2.34
the	14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.35	2.31	2.27
fort	15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.33	2.29	2.25	2.20
mo	16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.28	2.24	2.19	2.15
eed	17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.31	2.23	2.19	2.15	2.10
뇬	18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27	2.19	2.15	2.11	2.06
S 01	19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.23	2.16	2.11	2.07	2.03
gree	20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.20	2.12	2.08	2.04	1.99
Deć	21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.25	2.18	2.10	2.05	2.01	1.96
	22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.23	2.15	2.07	2.03	1.98	1.94
	23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.20	2.13	2.05	2.01	1.96	1.91
	24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.11	2.03	1.98	1.94	1.89
	25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.16	2.09	2.01	1.96	1.92	1.87
	30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.09	2.01	1.93	1.89	1.84	1.79
	40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.00	1.92	1.84	1.79	1.74	1.69
	60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.92	1.84	1.75	1.70	1.65	1.59
	120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.96	1.91	1.83	1.75	1.66	1.61	1.55	1.50
	8	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.75	1.67	1.57	1.52	1.46	1.39