MACHAKOS UNIVERSITY

University Examinations for 2021/2022

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS
FIRST YEAR FIRST SEMESTER EXAMINATION FOR
BACHELOR OF ARTS (PUBLIC ADMINISTRATION)

APP 102: QUANTITATIVE TECHNIQUES FOR POLICY MAKERS

INSTRUCTIONS TO CANDIDATES

Answer Question one And Any Other Two Questions.

QUESTION (COMPULSORY) (30 MARKS)

a) Solve the following equation: $\frac{3}{2} x+\frac{1}{3}=\frac{1}{4} x-\frac{1}{6}$
b) Find the derivative of $f(x)=x^{3}+2 x-1 \quad$ using first principles or the three-step rule i.e.

$$
\begin{equation*}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}, \text { where } h \neq 0 \tag{4marks}
\end{equation*}
$$

c) If $\cot \alpha=1$, find $\tan \alpha, \sin \alpha, \sec \alpha, \operatorname{cosec} \alpha$
d) Solve each system of equations by using A^{-1} :
$-2 x-3 y=1$
$3 x+4 y=-1$
e) Find $\lim _{x \rightarrow-1} \frac{x^{2}-1}{x^{2}-2 x+1}$
f) Evaluate $\int_{1}^{3}\left(t^{2}-2 t+3\right) d t$
g) Define a Markov chain, a one-step transition probability with an example having a state space
h) Maximize the objective function $P=x+2 y$ subject to the constraints: $y \leq 3, x+y \leq$ $5, x-2 y \leq 2, x \geq 0, y \geq 0$. Draw and find a feasible point or a feasible solution

QUESTION TWO (20 MARKS)

a) Find the first three terms and the $10^{\text {th }}$ term of each infinite sequence whose nth term is given by $a_{n}=\frac{(-1)^{n}}{(n+1)(n+2)}$
b) Find the sum of each arithmetic series $\sum_{n=3}^{n=15}(-0.1 n+1)$
c) Find the sum of each infinite series $-9.9+3.3-1.1+\cdots$
d) If Kshs 1000 is deposited at the end of each month for 30 years in a retirement account earning 9% compounded monthly, then what is the value of this annuity immediately after the last payment?
(6 marks)

QUESTION THREE (20 MARKS)

a) Find the derivative of the function $f(x)=\left(x^{2}-1\right) \frac{x^{3}+3 x^{2}}{x^{2}+2}$
(5 marks)
b) Use the second derivative test to determine the nature of the turning points of the function

$$
\begin{equation*}
f(x)=x^{4}+4 x^{3}-1 \tag{5marks}
\end{equation*}
$$

c) Evaluate the integral $\int_{0}^{2} x \sqrt{x^{2}+1} d x$ (5 marks)
d) The velocities of 2 runners are given by $f(t)=10 \mathrm{kmh}$ and $g(t)=(10-\operatorname{sint}) \mathrm{kmh}$. Find and interpret the integrals $\int_{0}^{\pi}[f(t)-g(t)] d t$ and $\int_{0}^{\pi}[g(t)-f(t)] d t$

QUESTION FOUR (20 MARKS)

a) Solve the following system using Cramer's rule:

$$
\begin{align*}
& x+y+z=6 \\
& x-y+z=2 \\
& 2 x+y+z=7 \tag{8marks}
\end{align*}
$$

b) Find $A B$ and $B A$ if $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 4 \\ 5 & 6\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & 0 & 1 \\ -1 & 1 & 0\end{array}\right]$
c) Let $f(x)=x-2, g(x)=x^{2}+1, h(x)=\frac{x+1}{3}$. Find $f[g(h(2))]$
(4 marks)
d) Determine all functions for which the given function $f(x, y)=\sqrt{9-x^{2}-y^{2}}$ is continuous

QUESTION FIVE (20 MARKS)

(a) Consider the University undergraduate system in the 8-4-4 system. Suppose individuals have a 15% chance of repeating each of the years. From experience, 75% of the $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ years respectively move to the next higher grade and that 80% of IV years pass the examination.
i. Represent this as a transition matrix in Canonical form
(3 marks)
ii. Find the probability of leaving the system in 2 years
(4 marks)
iii. What is the probability that an individual in grade I will be in the same grade after 3 years?
(b) Use simplex method to maximize $P=4 x+3 y$ subject

$$
\begin{equation*}
\text { to }-x+y \leq 4 ; x+2 y \leq 14 ; 2 x+y \leq 16 ; x, y \geq 0 \tag{10marks}
\end{equation*}
$$

