

MACHAKOS UNIVERSITY SCHOOL OF PURE AND APPLIED STATISTICS. DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTUARIAL SCIENCE. BACHELOR OF SCIENCE IN ACTUARIAL SCIENCE SECOND YEAR: FIRST SEMESTER: SAC 203: ACTUARIAL MATHEMATICS I:

INSTRUCTION: ANSWER QUESTION ONE [COMPUSLSORY] AND TWO OTHER QUESTIONS

QUESTION ONE: 30 MARKS.

a)	a) Define the following terms.			
	i.	Whole life assurance.	(2 marks)	
	ii.	Makeham's law.	(2 marks)	
b)	Using	Using ELT 15 (MALES) mortality, find the curtate expectation of life for, a 70		
	year o	old pensioner.	(3 marks)	
c)	The force of interest $\delta(t)$ is:			
	$\delta(t) = 0.005t + 0.0001t^2$ For all t.			
	i.	i. At $t = 8$, calculate the accumulated value of an investment of £ 100 made		
		at time $t = 0$.	(5 marks)	
ii. Calculate the constant annual ef		Calculate the constant annual effective rate of interest over the	ffective rate of interest over the eight year	
		period.	(3 marks)	
d)	Using the PMA92C20 table for both lives calculate:			
	2965:6	5	(5 marks)	

- e) If μ_x takes the constant value 0.025, at all ages, calculate the age x for which $_xp_0 = 0.5$.what does this age represent? (5 marks)
- f) For a force of mortality μ_x that is known to follow Gompertz' law ,calculate the parameters B and C if $\mu_{50} = 0.017609$ and $\mu_{55} = 0.028359$ (5 marks)

QUESTION TWO (20 MARKS)

a) A term assurance contract for a life aged 50 exact for a term of 10 years provides a benefit of £10,000 payable at the end of the year of death. Calculate the expected present value and variance of benefits payable under this contract.

(8 marks)

Basis:

.

Mortality: AM92 Select Interest: 4% per annum

b) An assurance contract provides a death benefit of £1,000 payable immediately on death, with a savings benefit of £500 payable on every fifth anniversary of the inception of the policy.

The following basis is used.

Force of mortality: $\mu_x = 0.05$ for all x Force of interest: $\delta = 0.04$ Expenses: None

Calculate the level premium payable annually in advance for life. (12 marks)

QUESTION THREE (20 MARKS)

The force of interest $\delta(t)$ is a function of time and at any time t, measured in years, is given by the formula:

$$\delta(t) = \begin{cases} 0.04 & 0 < t \le 5\\ 0.008t & 5 < t \le 10\\ 0.005t + 0.0003t^2 & 10 < t \end{cases}$$

a) Calculate the present value of a unit sum of money due at time t = 12.

(13 marks)

- b) Calculate the effective annual rate of interest over the 12 years. (2 marks)
- c) Calculate the present value at time t = 0 of a continuous payment stream that is paid at the rate of $e^{-0.05t}$ per unit time between time t = 2 and time t = 5.

(5 marks)

(10 marks)

QUESTION FOUR (20 MARKS)

 T_x denotes the future lifetime of a life aged x.

- a) Write down the probability density function of T_x . (1 mark)
- b) Using your answer to (a), show that
 - i. $\frac{\partial}{\partial s} \log_s p_x = -\mu_{x+s}$ and,
 - ii. $_t p_x = \exp\{-\int_0^t \mu_{x+s} \ ds\}$
- c) In a certain population, the force of mortality is given by,

$$\begin{array}{l} & \mu_x \\ 60 < x \le 70 & 0.01 \\ 70 < x \le 80 & 0.015 \\ x > 80 & 0.025 \end{array}$$

Calculate the probability that a life aged exactly 65 will die between exact ages 80 and 83. (9 marks)

QUESTION FIVE (20 MARKS)

- a) For the first 5 years after arrival in a certain country, lives are subject to a constant force of mortality of 0.005. Thereafter lives are subject to mortality according to ELT 15(Males) with an addition of 0.039221 to the force of mortality.
 - i. A life aged exactly 30 has just arrived in the country.
 - I. Show that the probability that the life will survive to age 35 is 0.97531.

(2 marks)

- II. Find the probability that the life will survive to age 60. (2 marks)
- ii. What is the probability that a life aged exactly 33 who has been in the country for 3 years will die between ages 50 and 51? (Assume that these lives will remain in the given country. (4 marks)
- b) Suppose that Gompertz' law $\mu_x = Bc^x$, holds for all $x \ge \alpha, c$ being greater than 1. Assume that $\mu_\alpha < \log c$.
 - i. Give a formula fors(x). (4 marks)
 - ii. Show that $l_x \mu_x$ attains a maximum when $\mu_x = \log c$, and has no other stationary points. (8 marks)