MACHAKOS UNIVERSITY
SCHOOL OF PURE AND APPLIED STATISTICS.
DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTUARIAL SCIENCE.
BACHELOR OF SCIENCE IN ACTUARIAL SCIENCE
SECOND YEAR: FIRST SEMESTER: SAC 203: ACTUARIAL MATHEMATICS I:

INSTRUCTION: ANSWER QUESTION ONE [COMPUSLSORY] AND TWO OTHER QUESTIONS

QUESTION ONE: 30 MARKS.
a) Define the following terms.
i. Whole life assurance.
ii. Makeham's law.
b) Using ELT 15 (MALES) mortality, find the curtate expectation of life for, a 70 year old pensioner.
c) The force of interest $\delta(t)$ is:

$$
\delta(t)=0.005 t+0.0001 t^{2} \text { For all } \mathrm{t} .
$$

i. At $t=8$,calculate the accumulated value of an investment of $£ 100$ made at timet $=0$.
ii. Calculate the constant annual effective rate of interest over the eight year period.
d) Using the PMA92C20 table for both lives calculate:
e) If μ_{x} takes the constant value 0.025 , at all ages, calculate the age x for which ${ }_{x} p_{0}=0.5$. what does this age represent?
f) For a force of mortality μ_{x} that is known to follow Gompertz' law ,calculate the parameters B and C if $\mu_{50}=0.017609$ and $\mu_{55}=0.028359$

QUESTION TWO (20 MARKS)

a) A term assurance contract for a life aged 50 exact for a term of 10 years provides a benefit of $£ 10,000$ payable at the end of the year of death. Calculate the expected present value and variance of benefits payable under this contract.

Basis:

$$
\begin{array}{ll}
\text { Mortality: } & \text { AM92 Select } \\
\text { Interest: } & 4 \% \text { per annum }
\end{array}
$$

b) An assurance contract provides a death benefit of $£ 1,000$ payable immediately on death, with a savings benefit of $£ 500$ payable on every fifth anniversary of the inception of the policy.
The following basis is used.
$\begin{array}{ll}\text { Force of mortality: } & \mu_{x}=0.05 \text { for all } x \\ \text { Force of interest: } & \delta=0.04 \\ \text { Expenses: } & \text { None }\end{array}$

Calculate the level premium payable annually in advance for life.
(12 marks)

QUESTION THREE (20 MARKS)

The force of interest $\delta(t)$ is a function of time and at any time t, measured in years, is given by the formula:

$$
\delta(t)= \begin{cases}0.04 & 0<t \leq 5 \\ 0.008 t & 5<t \leq 10 \\ 0.005 t+0.0003 t^{2} & 10<t\end{cases}
$$

a) Calculate the present value of a unit sum of money due at time $t=12$.
b) Calculate the effective annual rate of interest over the 12 years.
c) Calculate the present value at time $t=0$ of a continuous payment stream that is paid at the rate of $e^{-0.05 t}$ per unit time between time $t=2$ and time $t=5$.
(5 marks)

QUESTION FOUR (20 MARKS)

T_{x} denotes the future lifetime of a life aged x.
a) Write down the probability density function of T_{x}.
b) Using your answer to (a), show that
i. $\frac{\partial}{\partial s} \log { }_{s} p_{x}=-\mu_{x+s}$ and,
ii. ${ }_{t} p_{x}=\exp \left\{-\int_{0}^{t} \mu_{x+s} d s\right\}$
c) In a certain population, the force of mortality is given by,

$$
\begin{array}{lc}
& \mu_{x} \\
60<x \leq 70 & 0.01 \\
70<x \leq 80 & 0.015 \\
x>80 & 0.025
\end{array}
$$

Calculate the probability that a life aged exactly 65 will die between exact ages 80 and 83 .
(9 marks)

QUESTION FIVE (20 MARKS)

a) For the first 5 years after arrival in a certain country, lives are subject to a constant force of mortality of 0.005 . Thereafter lives are subject to mortality according to ELT 15 (Males) with an addition of 0.039221 to the force of mortality.
i. A life aged exactly 30 has just arrived in the country.
I. Show that the probability that the life will survive to age 35 is 0.97531 .
II. Find the probability that the life will survive to age 60 .
ii. What is the probability that a life aged exactly 33 who has been in the country for 3 years will die between ages 50 and 51? (Assume that these lives will remain in the given country.
b) Suppose that Gompertz' law $\mu_{x}=B c^{x}$, holds for all $x \geq \alpha, c$ being greater than 1 . Assume that $\mu_{\alpha}<\log c$.
i. Give a formula fors (x).
ii. Show that $l_{x} \mu_{x}$ attains a maximum when $\mu_{x}=\log c$, and has no other stationary points.
(8 marks)

