

University Examinations for 2021/2022

SCHOOL OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

THIRD YEAR SECOND SEMESTER EXAMINATION FOR DIPLOMA IN ELECTRICAL ENGINEERING CONTROL SYSTEMS

DATE:

TIME:

Instructions

Answer question ONE and any other TWO questions

- 1. (a) Define the following terms with respect to control systems
 - Controlled variable
 - Manipulated variables (6 marks)
 - (b) State THREE merits of a closed loop control system (6 marks)
 - (c) With the aid of a labelled block diagram describe an open loop control system

(8 marks)

(d) The closed loop transfer function of a given system is

$$\frac{600}{s^2 + 70s + 600}$$

obtain

- undamped natural frequency
- Natural frequency
- And damping ratio of the system (10 marks)
- 2. A unity feedback system subjected to a unit step input has an open loop transfer function

$$\text{GS} = \frac{k}{S(S+10)}$$

Determine

- Characteristic equation
- Gain K so that the system will have a damping ratio of 0.5
- Settling time
- Percentage overshoot

(20 marks)

- 3. (a) Define each of the following in relation to signal flow graphs
 - Feedback path
 - Self loop
 - Path
 - Path gain (10 marks)
 - (b) the figure below shows an R-C circuit diagram, derive its transfer function

4. a) State TWO demerits of stability analysis using Nyquist method (4 marks)

b) The table below shows the open loop frequency response of a control system.

Draw Nyquist diagram for the system and determine the

- Gain margin
- Phase margin

• Comment on the stability of the system				20marks	
GD rad/sec	1	2	3	4	5
GH(dB)	4.5	1.6	0.8	0.5	0.3
Phase angle	-127	-152	-168	-180	-188
0°					

5. (a) define the ROUTH stability criterion

(5 marks)

(b) Consider a 4th order system with the following characteristics equation

 $s^4 + 8s^3 + 18s + 16s + 5 = 0$ using Routh stability criterion determine whether the system is stable or not (15 marks)