MACHAKOS UNIVERSITY

University Examinations for 2021/2022

SCHOOL OF ENGINEERING AND TECHNOLOGY
DEPARTMENT OF MECHANICAL ENGINEERING
FIRST YEAR FIRST SEMESTER EXAMINATION FOR CRAFT CERIFICATE IN MECHANICAL ENGINEERING (PRODUCION) MODULE I

1501/102/MS: MECHANICAL SCIENCE
DATE:
TIME:

INSTRUCTIONS: ANSWER ALL QUESTIONS

1 (a) Define the following terms;
I) Force
II) Scalar quantity
III) Vector quantity
(b) Four forces of magnitudes $10 \mathrm{KN}, 15 \mathrm{KN}, 20 \mathrm{KN}$ and 40 KN are acting outwards at a point O . The angles made by the forces with X -axis in an anticlockwise direction are $30^{\circ}, 60^{\circ}, 90^{\circ}$ and 120° respectively. Using analytical method, find the magnitude and direction of the resultant force.
(17 marks)
2. (a) I) State the principle of moments
II) State the condition for a body to be in equilibrium
III) Differentiate between moment of a force and a couple (6 marks)
(b) A bus chassis 5.4 m long consists of two side members and a number of cross members. Each side member can be considered as a beam, simply supported at two points A and B,3.6m apart, A being positioned 0.9 m from the front end of the frame and subjected to the following concentrated loads;

Engine support (front) 2 KN , engine support(rear) 2.5 KN , gear box support 0.5 KN and body W KN. The distances of these loads are respectively $0.6 \mathrm{~m}, 1.8 \mathrm{~m}, 2.4 \mathrm{~m}$ and 3 m . If the reaction at A is 8.5 KN , determine the magnitude of the;
I) Load W due to the vehicle body
3. (a) I) Differentiate between coplanar forces and concurrent forces
II) State the parallelogram of force's rule
III) State the triangle of force's rule
(b) A load of 2000 N is suspended in the air by two ropes. If the inclination of the ropes to the vertical are 45° and 60° respectively, draw the space and force diagram and determine tension in each rope.
(12 marks)
4. A uniform beam 4 m long is simply supported at two points A and B. Point A being 0.5 m from the left-hand end and point B 1.5 m from the right-hand end. The beam carries loads of 600 N at the left-hand end, 800 N at its Centre and 400 N at the right-hand end, determine the;
(a) Magnitude of the support reactions at A and B
(b) Point at which a load of 800 N should be applied to make the support reaction equal
5. (a) Four coplanar forces act at a point as shown. The angle between 4 N force and 8 N force is 90°, between 8 N force and 7 N force is 60° and that between 5 N force and the horizontal is 30°.Determine graphically their resultant in magnitude and direction.
(10 marks)

(b) A uniform horizontal lever is supported on a pivot and loaded as shown. Neglect the mass of the lever and calculate the magnitude of the;
I) Load F required to maintain equilibrium
II) Reaction R at the support.
(10 marks)

