

MACHAKOS UNIVERSITY

University Examinations for 2020/2021

SCHOOL OF ENGINEERING AND TECHNOLOGY
 DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

PLANT ELECTRICAL
 Diploma in Mechanical Module II

Answer all questions

Time 2 Hrs

Question 1

a) i) Name any five wiring systems
ii) Explain any Two areas of application of the wiring systems marks)
b) Draw the symbols of the following electrical devices
i) One way switch
ii) Consumer control unit
iii) Two way switch
c) Explain the term wiring systems
d) Explain the factors to consider when choosing a wiring system

Question Two

a) Explain the function of the following parts in a d.c. machine
I) Yoke
II) Field windings
ii) Highlight any three classifications of D.C. machines
b) A 240 v d.c. shunt machine has an armature resistance of 0.2Ω and shunt resistance of 50Ω. If the supply current is 20 A . Calculate
i) E_{b} when operating as a motor
ii) E_{g} when operating as a generator

Question Three

a) With the aid of a labeled diagram explain the consumer and supply authorities equipment's.
(10marks)
b) With the aid a table, list the PVC cable sizes and fuse ratings for
i) Lighting
ii) Socket outlets
iii) Cooker control unit
iv) Water heater
v) Main distribution board
(10marks)

Question 4

a) Define the following terms
i) Conductor
ii) Insulator
iii) Semi-conductor
(6marks)
b) List any five characteristics of a desirable good conductor
(5marks)
c) List any four materials used as insulators in electrical
(4marks)
d) List areas of application of series motors

Question five

a) List any five characteristics of an insulator in electrical
b) List any five qualities of a protection system
c) A 240 V series d.c. motor has an armature resistance of 0.2Ω and a series resistance of 10Ω. The supply current is 15 A . Determine
i) E_{b} when running as a motor
ii) Eg_{g} when operating as a generator

DIPLOMA MODULE II ELECTRICAL
 POWER GENERATION AND TRANSMISSION / ELECTRICAL BUILDING SERVICES

Answer all questions

Time 2 Hrs

Question one

a) i) State any Two causes of poor power factor
(2marks)
ii) Explain how a synchronous condenser is used to improve the power factor of a given system
b) A single phase motor connected to $500 \mathrm{~V}, 50 \mathrm{~Hz}$ supply takes 40 A at a power factor 0.8 lagging. Calculate the capacitance required in parallel with the motor to raise the power factor to 0.95 lagging.
c) i) Explain any Two components of an overhead line.
ii) State any two advantages of suspension insulators.
iii) A 33 KV overhead line has 3 units in a string of insulators. If the capacitance between pin and earth is 12% of self-capacitance. Determine the voltage distribution and string efficiency.

Question Two

1. a) i) State any four methods used to test overhead insulators.
(2marks)
ii) With reference to economics of power, define the following terms
I) Load factor
II) Connected loads
b) i) A generating station has a connected load of 50 MW and a maximum demand of 30 MW , the units generated per annum are 70×10^{6}. Calculate
i) Demand factor
ii) Load factor
ii) With the aid of a labeled diagram, explain the operation of an hydropower plant. (5marks)
c) Highlight any five advantages of overhead supply system as compared to underground supply.

Question Three

a) i) Explain the following types of tariffs
I) Flat rate
II) Block rate
III) Two part
ii) Derive an expression for Kelvins law in economics of cost.
b) The cost of a 3 phase overhead line is Kshs. $(4000 \mathrm{a}+4000)$ per Km, a is the cross ectional area in cm^{2}. The line is supplying a load of 10 MW at $66 \mathrm{KV}, 0.8$ p.f lagging. Energy cost Kshs.10per KWh. Interest and depreciation is 10% per annum. Calculate the most economical size of the conductor. Given specific resistance of conductor material is 10^{-6} $\Omega \mathrm{cm}$.
(8marks)
e) State any four limitations of the Kelvins law.

Question Four

a) i) Explain the effect of resistance, capacitance and inductance on voltage regulation of a transmission line (2marks)
ii) Explain skin effect on overhead lines and state a method of its reduction
b) Three conductors of a 3phase line are arranged at the corners of a triangle $3 \mathrm{~m}, 4 \mathrm{~m}$ and 5 m . Calculate the inductance per Km of line when the diameter of the conductor is 1.8 cm . the 3 phase, $50 \mathrm{~Hz}, 132 \mathrm{KV}$ overhead line has conductors placed 5 m apart. The conductor diameter is 2 cm . For a length of 200 Km . Calculate the charging current per phase. (10marks)
c) Explain any three methods of improving string efficiency of an overhead line. (3marks)

Electrical Building Services

Question 5

a) i) Explain the following terms
I) Depreciation factor
II) Space to height ratio
(4marks)
b) A room measures $100 \mathrm{~m} \times 50 \mathrm{~m}$, the illumination required is $80 / \mathrm{lux}$, and 20 fluorescent tubes gives $45 / \mathrm{m} / \mathrm{w}$, using depreciation factor and utilization factor 1.5 and 0.6 . Calculate the number of twin fluorescent lamps required (8marks)
c) i) Explain any Two types of corrosion
ii) With the aid of a diagram, explain the impressed catholic protection system
R-

DIPLOMA MODULE II ELECTRICAL CIRCUIT ANALYSIS

Answer all questions
Time 2 Hrs

Question One

1. a) Explain the function of the following parts of a D.C. machine
I) Pole shoes
II) Armature core
ii) A D.C. shunt motor is supplied with 230 V with a current of 5 A at 1000 rpm . The armature resistance and shunt are 0.2Ω and 230Ω respectively. The armature current is varied to 30 A using rheostatic method. Calculate new speed.
b) i) Explain the dynamic braking in d.c. machines
ii) List the requirements of a good braking system
c) Highlight any three areas of application of shunt wound D.C. motor.

Question Two

2. a) i) For figure 1 below determine the current through the $5+\mathrm{j} 6$ resistor using the Thevenins theorem.
(6marks)
ii) State the Nortons theorem
b) For circuit in figure 2 below, using Delta-Star, transformation, determine the supply current.
c) For the circuit shown in figure 3 below the load impedance Z is a pure resistance.

Determine the value of R for maximum power to be transferred from the source to the load.

Question 3

1.a) i) Explain the terms D.C transients and Time constant as applied in transients. (4marks)
ii) Draw graphs of R.L growth circuit in transients
b) The windings of a transformer have an inductance of 5 H and a resistance of 2Ω connected to a 200 V d.c. supply calculate.
i) Steady state current flowing
ii) Induced voltage after 0.15
iii) Time for current to raise to 95% of its final value.
(11marks)

Question 4

a) i) Explain the terms harmonics and periodic time as applied to complex waves. (4marks)
ii) State any five sources of harmonies
b) A supply voltage V is given by
$\mathrm{V}=(300 \sin 314 \mathrm{t}+100 \sin 942 \mathrm{t}+50 \sin 1570 \mathrm{t}) \mathrm{V}$
It is applied to a circuit with resistance of 15Ω, in series to a coil of 10 mH
Determine
i) Expression for instantenous current
ii) rms current
iii) rms voltage
v) Power dissipated

Question 5

a) Define the following terms power factor and reactive power in A.C. circuit (4marks)
b) A circuit has a resistor of 30Ω in series with an inductance of 0.2 H . A $250 \mathrm{~V}, 50 \mathrm{~Hz}$ supply is connected. Determine
i) Impedance
ii) Current and phase angle
iii) p.d. across the 30Ω resistor
iv) p.d across the coil (8marks)
c) An A.C. network consists of a coil of inductance 80 mH and resistance 20Ω in parallel with a capacitor of $50 \mu \mathrm{~F}$. If the supply voltage is $300 \mathrm{~V}<0^{\circ}$ at 50 Hz supply. Determine
i) Total circuit impedance
ii) Supply current
iii) Circuit phase angle
iv) Current in capacitor

