

MACHAKOS UNIVERSITY ISO 9001:2008 Certified 💬

UNIVERSITY EXAMINATIONS 2020/2021

UNIVERSITY SUPPLEMENTARY EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE COMPUTER SCIENCE

CSO 108: DISCRETE MATHEMATICS

NSTRUCTIONS TO CANDIDATES

(a) Answer ALL the questions in Section A and ANY THREE Questions in Section B

SECTION A

QUESTION ONE 30 Marks (Compulsory)

- a) Define the following terms.
 - i). A graph
- ii). trail
- iii). Set
- iv). Proposition
- v). A subset

(5 marks)

- b) Find the power set of the set $A = \{1, 2, 3, 4\}$. (3 marks)
- c) Construct all the unlabeled graphs with 4 vertices (5 marks)
- d) Construct the truth table for the disjunction of two proposition (4 marks)
- e) In how many distinguishable ways can the product $Z^7 X^8 Y^7 T^6$ be arranged without using exponents. (3 marks)
- f) Given A = ((abc)'c)'(a'+c)(b'+ac')' express it as a sum of product expression. . (5 marks)
- g) Prove that if a bipartite graph has a cycle then all its cycles are of even length. (5 marks)

QUESTION TWO 20 MARKS

a) Construct the logic circuit for the following output Y = (XY + ZY')' + (X' + ZY)'

(5 marks)

- b) Show that D_{210} (where D_{210} are divisors of 210) is a Boolean algebra
 - i) Find the atoms (3 marks)
 - ii) Find the subalgebra (3 marks)
 - iii) Construct the lattice diagram (4 marks)
- c) Given that = $00111001 \quad Y = 11100011 \quad Z = 00110010 \quad T = 01011011$. Find

$$A = X.Y.Z.T + TZ$$
(5 marks)

QUESTION THREE 20 MARKS

a)	en that a and b are rational with $b \neq 0$ and s is an irrational number such that $a - bs = t$.	
	Show that t is irrational hence show that $\frac{-1+\sqrt{3}}{1+\sqrt{3}}$ is irrational	(6 marks)
b)	Show that $\sqrt{5}$ is irrational	(5 marks)
c)	Proof that set of all even natural numbers is countable.	(5 marks)
d)	uppose two boys say Fred and Sum are playing a Football tournament such that the	
	irst person to win two games in a row or who wins a total of three games wins the	
	ournament. Construct a rooted tree to illustrate the above . Find the number of ways	
	the tournament can be won.	(5 marks)

QUESTION FOUR 20 MARKS

- a) Prove that if G is a connected planar graph with P vertices and q edges. Where $p \ge 3$. then $q \le 3p - 6$. (5 marks)
- b) Construct the Incidency matrix for the following graph. (5 marks)

c) Find the shortest path from A to Z for the map shown below

a) Prove that if M is a map with V vertices, E edges and R regions and K components. Then V - E + R = K + 1. (5 marks)

QUESTION FIVE 20 MARKS

a) Let $U = \{i, j, k, l, m, n, o, p, q, r, s, t, u\}$, $A = \{i, k, l, m, q\}$ $B = \{j, k, q, r\}$ $C = \{j, k, m, o\}$ and $D = \{j, o, p\}$.

Determine the set

- i) $A \cup B$
- ii) $A \cap C$
- iii) $(A \cup B) \cap C^c$
- iv) $(C \cap A) \cup D$

b) Let $A = \{s, t\}$ and $B = \{1,4,6\}$ determine the set

$$(A \times B) X B$$
 (2marks)

- c) A man who works five days a week can travel to work on foot, by bicycle or by bus. In how many ways can he arrange a week's travelling to work?
 (6 marks)
- d) Show that $|p \lor q$ and $p \rightarrow q$ are logically equivalent (6 marks)