

MACHAKOS UNIVERSITY

ISO 9001:2008 Certified 🕥

UNIVERSITY EXAMINATIONS 2019/2020

UNIVERSITY SUPPLEMENTARY EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE STATISTICS AND PROGRAMMING AND ACTUARIAL SCIENCE

SST 103: LINEAR ALGEBRA

NSTRUCTIONS TO CANDIDATES

(a) Answer ALL the questions in Section A and ANY TWO Questions in Section B

SECTION A

QUESTION ONE 30 Marks (Compulsory)

- a) Find the angle between the following vectors 4i + 4j + 6k and i + 2j + 2k (4 marks)
- b) Solve the homogenous system by Gauss elimination method

$$2x - 4y + 6z = 20$$

$$3x - 6y + z = 22$$

$$-2x + 5y - 9z = 18$$
 (5 marks)

c) If
$$\begin{vmatrix} 4y & 20 \\ 4y & 8y+4 \end{vmatrix} = 8$$
 find y (3 marks)

Calculate the cross product of the vectors $\vec{u} = (2, 2, 3)$ and $\vec{v} = (-1, 1, 3)$. (3 marks)

d) Find the inverse of the following matrix

$$\begin{bmatrix} 1 & 3 & 2 \\ 2 & 4 & 2 \\ 1 & 2 & -1 \end{bmatrix}$$
(4 marks)

- e) Show that the vector (2,-6,3) is a linear combination of the (3,-5,4) and (1,-2,-1)
- f) Calculate the x and y values for the vector (x, y, 1) that is orthogonal to the vectors (3, 2, 0) and (2, 1, -1). (4 marks)
- g) Determine if (1,2,2,1), (2,3,4,1) and (3,8,7,5) is linearly dependent (4 marks)
- h) Find the dot product of the following vectors (3,4,-1) and (4,6,1) (3 marks)

SECTION B

QUESTION TWO 20 MARKS

a)	Let $T: \mathbb{R}^2 \to \mathbb{R}$ be defined by $T(x, y) = x + y$. Is T a linear map?	(7 marks)
b)	Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T(x, y) = \{x + y, x\}$. Find the kernel of T	(5 marks)
c)	Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear mapping defined by	
	T(x, y, z) = (x + 2y - z, y + z, x + y + z). Find the basis and dimension of	

- i). Image of T
 - ii). Kernel of T (8marks)

QUESTION THREE 20 MARKS

a)	Find the equation of the plane passing through the point $(3, -1, 7)$ and perpendicular to the					
	vector $n = (4, 2, -5)$	(5 marks)				
b)	Find the distance from the origin to the plane $2x + 3y - z = 2$	(5 marks)				
c)	Find the parametric equations for the line of intersection of the plane					
	3x + 2y - 4z - 6 = 0 and $x - 3y - 2z - 4 = 0$	(5 marks)				
d)	Find the distance D between the point $(1, -4, -3)$ and the plane $2x - 3y + 6z = -1$					
		(5 marks)				
QUESTION FOUR 20 MARKS						
	a) Show that $w = \{ (x, y, z) x + y + z = 0 \}$ is a subspace of \mathbb{R}^3	(5 marks)				
	b) Show that the vectors $u=(1,-1,0) v=(1,3,-1)$ and $w=(5,3,-2)$ are linearly	dependent.				

- b) show that the vectors u=(1,-1,0) = (1,3,-1) and w=(5,3,-2) are linearly dependent. . (5 marks)
- c) Find the rank of the following matrix

2	4	- 31	
3	-3	2	(5 marks
2	0	3	

d) Solve by crammer's Rule

$$x - 2y + 3z = 10$$

$$3x - 6y + z = 22$$

$$-2x + 5y - 2z = -18$$
 (5 marks)

QUESTION FIVE 20 MARKS

a)	Define a vector space	(6 marks)
b)	Show that $W = \{(x, y) / x = 2y\}$ is a subspace for R^2 .	(4 marks)
c)	Prove that the diagonals of a rhombus are perpendicular.	(5 marks)
d)	Find the parametric and the symmetric equations of the line passing through $(2, 3, -4)$ and parallel to the vector $(3, 5, -6)$	the point (5 marks)