MACHAKOS UNIVERSITY

UNIVERSITY SUPPLEMENTARY EXAMINATIONS

Course: Public Administration

APP 102: OUANTITATIVE TECHNIQUES FOR POLICY MAKERS

Date:	Time:
Answer question ONE and any other TWO questions	
QUESTION 1: 30 MARKS (COMPULSORY)	
a) Solve by factorization method $2x^2 - 5x - 3 = 0$	(5 marks)
b) Find a number such that 3 more than one half of the number is t	two thirds the number
	(5 marks)
c) Solve for x in $x^2 - 9x + 4 = 0$	(4 marks)
d) Compute the value of the following limit $\lim_{x\to 2} (3x^2 + 5x - 9)$	(5 marks)
e) Use the definition of derivatives to differentiate $f(x) = x^2$	(5 marks)
f) Find a ₆ for an arithmetic sequence where $a_1 = 3x - 1$ and $d = 2x$	$\alpha + 6$ (6 marks)
QUESTION 2 (20 MARKS)	
a) Find the equation for the line that has a slope of $\frac{2}{3}$ and passes the	hrough (6,2) (4 marks)
b) Evaluate the indefinite integral defined by $\int (2x^2 4x + 3) dx$	(4 marks)
c) The fourth term of a geometric progression is 27 and the seven	th term is 729. Find
i. The first term	(4 marks)
ii. The common difference	(4 marks)
d) Evaluate $\frac{\log 125 - \log 25}{\log 25 + \log 5}$	(4 marks)
OUESTION 3 (20 MARKS)	

QUESTION 3 (20 MARKS)

a) A rectangular field has an area of 75 m². The width of the field is 3 m longer than the length of the rectangle. What are the dimensions of the field? (8 marks)

b) Differentiate
$$f(t) = \frac{3t+9}{2-t}$$
 with respect to t (6 marks)

c) Determine the points where the function below is not continuous

$$h(t) = \frac{4t+10}{t^2 - 2t - 15}$$
 (6 marks)

QUESTION 4 (20 MARKS)

- a) The first term of an arithmetic sequence is equal to 6 and the common difference is equal to 3.
 - i. Find the formula of the nth term (3mks)
 - ii. Find the 50^{th} term (3mks)
- b) Given that the fourth and the eight terms of the arithmetic sequence are a_4 =93 and a_8 =65
 - i. Find the common differences d and the first term a (4 marks)
 - ii. Find the nth term (2 marks)
- c) Find S_{10} for 250, 100, 40, 16,.... (4 marks)
- d) Find the 9th term of the sequence

$$1, \sqrt{2}, 2, \dots$$
 (4 marks)

QUESTIONS 5 (20 MARKS)

a) Use simple method to maximize $z = 3x_1 + 2x_2$ subject to the following;

$$-x_1 + 2x_2 \le 4$$

 $3x_1 + 2x_2 \le 14$
 $x_1 - x_2 \le 3$

$$x_1, x_2 \ge 0 \tag{14 marks}$$

b) Evaluate the indefinite integral defined by $\int (x^4 + 3x + 1)dx$ (6 marks)